Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jul;63(7):2556–2563. doi: 10.1128/iai.63.7.2556-2563.1995

A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo.

G Spatafora 1, K Rohrer 1, D Barnard 1, S Michalek 1
PMCID: PMC173342  PMID: 7790069

Abstract

We used the streptococcal transposon, Tn916 to identify and isolate mutants of Streptococcus mutans with altered intracellular polysaccharide (IPS) accumulation. We report on the isolation and characterization of S. mutans SMS202, a transposon mutant which accumulated the glycogen-like IPS in excess of wild-type levels. Southern blot analysis confirmed a single Tn916 insertion into the SMS202 chromosome. Moreover, quantitative ultrastructural analysis revealed significantly increased concentrations of IPS in SMS202 relative to those of the wild-type progenitor strain, UA130. The activities of ADPglucose pyrophosphorylase (GlgC) and glycogen synthase (GlgA), enzymes required for the biosynthesis of bacterial IPS, were also elevated in the IPS excess mutant. Furthermore, SMS202 was significantly more cariogenic on the molar surfaces of germ-free rats than the wild type (P < 0.01), thus confirming a central role for IPS in S. mutants-induced caries formation. We propose that the increased cariogenic potential of SMS202 is due to constitutive expression of genes which encode glycogen biosynthesis in this oral pathogen. The coordinate expression of GlgC and GlgA along with the results of ongoing nucleotide sequence analysis and Northern hybridization experiments support an operon-like arrangement for the glg genes of this oral pathogen.

Full Text

The Full Text of this article is available as a PDF (591.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkhed D., Tanzer J. M. Glycogen synthesis pathway in Streptococcus mutans strain NCTC 10449S and its glycogen synthesis-defective mutant 805. Arch Oral Biol. 1979;24(1):67–73. doi: 10.1016/0003-9969(79)90177-8. [DOI] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charlton G., Fitzgerald D. B., Keyes P. H. Hydrogen ion activity in dental plaques of hamsters during metabolism of sucrose, glucose and fructose. Arch Oral Biol. 1971 Jun;16(6):655–661. doi: 10.1016/0003-9969(71)90069-0. [DOI] [PubMed] [Google Scholar]
  4. Clewell D. B., Flannagan S. E., Ike Y., Jones J. M., Gawron-Burke C. Sequence analysis of termini of conjugative transposon Tn916. J Bacteriol. 1988 Jul;170(7):3046–3052. doi: 10.1128/jb.170.7.3046-3052.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DiPersio J. R., Mattingly S. J., Higgins M. L., Shockman G. D. Measurement of intracellular iodophilic polysaccharide in two cariogenic strains of Streptococcus mutans by cytochemical and chemical methods. Infect Immun. 1974 Sep;10(3):597–604. doi: 10.1128/iai.10.3.597-604.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  7. Harris G. S., Michalek S. M., Curtiss R., 3rd Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. Infect Immun. 1992 Aug;60(8):3175–3185. doi: 10.1128/iai.60.8.3175-3185.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. JORDAN H. V., FITZGERALD R. J., BOWLER A. E. Inhibition of experimental caries by sodium metabisulfite and its effect on the growth and metabolism of selected bacteria. J Dent Res. 1960 Jan-Feb;39:116–123. doi: 10.1177/00220345600390010501. [DOI] [PubMed] [Google Scholar]
  9. KEYES P. H. Dental caries in the molar teeth of rats. II. A method for diagnosing and scoring several types of lesions simultaneously. J Dent Res. 1958 Nov-Dec;37(6):1088–1099. doi: 10.1177/00220345580370060901. [DOI] [PubMed] [Google Scholar]
  10. Kiel J. A., Boels J. M., Beldman G., Venema G. Molecular cloning and nucleotide sequence of the glycogen branching enzyme gene (glgB) from Bacillus stearothermophilus and expression in Escherichia coli and Bacillus subtilis. Mol Gen Genet. 1991 Nov;230(1-2):136–144. doi: 10.1007/BF00290661. [DOI] [PubMed] [Google Scholar]
  11. Kiel J. A., Elgersma H. S., Beldman G., Vossen J. P., Venema G. Cloning and expression of the branching enzyme gene (glgB) from the cyanobacterium Synechococcus sp. PCC7942 in Escherichia coli. Gene. 1989 May 15;78(1):9–17. doi: 10.1016/0378-1119(89)90309-0. [DOI] [PubMed] [Google Scholar]
  12. Lane M. A., Bayles K. W., Yasbin R. E. Identification and initial characterization of glucose-repressible promoters of Streptococcus mutans. Gene. 1991 Apr;100:225–229. doi: 10.1016/0378-1119(91)90371-h. [DOI] [PubMed] [Google Scholar]
  13. Leung P. S., Preiss J. Cloning of the ADPglucose pyrophosphorylase (glgC) and glycogen synthase (glgA) structural genes from Salmonella typhimurium LT2. J Bacteriol. 1987 Sep;169(9):4349–4354. doi: 10.1128/jb.169.9.4349-4354.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loesche W. J. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986 Dec;50(4):353–380. doi: 10.1128/mr.50.4.353-380.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Michalek S. M., McGhee J. R., Navia J. M. Virulence of Streptococcus mutans: a sensitive method for evaluating cariogenicity in young gnotobiotic rats. Infect Immun. 1975 Jul;12(1):69–75. doi: 10.1128/iai.12.1.69-75.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murchison H. H., Barrett J. F., Cardineau G. A., Curtiss R., 3rd Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun. 1986 Nov;54(2):273–282. doi: 10.1128/iai.54.2.273-282.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Okita T. W., Rodriguez R. L., Preiss J. Isolation of Escherichia coli structural genes coding for the glycogen biosynthetic enzymes. Methods Enzymol. 1982;83:549–556. doi: 10.1016/0076-6879(82)83051-6. [DOI] [PubMed] [Google Scholar]
  18. Preiss J. Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol. 1984;38:419–458. doi: 10.1146/annurev.mi.38.100184.002223. [DOI] [PubMed] [Google Scholar]
  19. Preiss J., Romeo T. Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv Microb Physiol. 1989;30:183–238. doi: 10.1016/s0065-2911(08)60113-7. [DOI] [PubMed] [Google Scholar]
  20. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  21. Romeo T., Preiss J. Genetic regulation of glycogen biosynthesis in Escherichia coli: in vitro effects of cyclic AMP and guanosine 5'-diphosphate 3'-diphosphate and analysis of in vivo transcripts. J Bacteriol. 1989 May;171(5):2773–2782. doi: 10.1128/jb.171.5.2773-2782.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Senghas E., Jones J. M., Yamamoto M., Gawron-Burke C., Clewell D. B. Genetic organization of the bacterial conjugative transposon Tn916. J Bacteriol. 1988 Jan;170(1):245–249. doi: 10.1128/jb.170.1.245-249.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Setlow P. Inability of detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem Biophys Res Commun. 1973 May 15;52(2):365–372. doi: 10.1016/0006-291x(73)90720-1. [DOI] [PubMed] [Google Scholar]
  24. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  25. Steiner K. E., Preiss J. Biosynthesis of bacterial glycogen: genetic and allosteric regulation of glycogen biosynthesis in Salmonella typhimurium LT-2. J Bacteriol. 1977 Jan;129(1):246–253. doi: 10.1128/jb.129.1.246-253.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stewart G. C. Catabolite repression in the gram-positive bacteria: generation of negative regulators of transcription. J Cell Biochem. 1993 Jan;51(1):25–28. doi: 10.1002/jcb.240510106. [DOI] [PubMed] [Google Scholar]
  27. Terleckyj B., Willett N. P., Shockman G. D. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975 Apr;11(4):649–655. doi: 10.1128/iai.11.4.649-655.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yamamoto M., Jones J. M., Senghas E., Gawron-Burke C., Clewell D. B. Generation of Tn5 insertions in streptococcal conjugative transposon Tn916. Appl Environ Microbiol. 1987 May;53(5):1069–1072. doi: 10.1128/aem.53.5.1069-1072.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES