Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Jul;63(7):2793–2796. doi: 10.1128/iai.63.7.2793-2796.1995

Enhancement of macrophage microbicidal activity: supplemental arginine and citrulline augment nitric oxide production in murine peritoneal macrophages and promote intracellular killing of Trypanosoma cruzi.

K A Norris 1, J E Schrimpf 1, J L Flynn 1, S M Morris Jr 1
PMCID: PMC173377  PMID: 7790103

Abstract

The generation of nitric oxide (NO) is largely responsible for the intracellular killing of Trypanosoma cruzi by activated macrophages. The present study was carried out to determine whether the production of NO by activated murine macrophages cultured in physiologic levels of arginine can be augmented by increasing the availability of arginine, the substrate for NO biosynthesis. Increased exogenous arginine or citrulline resulted in a significant increase in NO production and complete clearance of the parasites by activated macrophages. As citrulline fully substituted for arginine in supporting NO production and trypanocidal activity, these results demonstrate the expression of a highly active citrulline-NO cycle in activated macrophages and that levels of arginine in plasma are limiting with respect to both NO production and trypanocidal activity in these cells. The results indicate that increasing plasma substrate levels for both arginine and NO biosynthesis may represent a means of enhancing microbicidal activity in vivo.

Full Text

The Full Text of this article is available as a PDF (188.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Mills C. D., Barbul A., Thirkill C. E., Henry W. L., Jr, Mastrofrancesco B., Caldwell M. D. Arginine metabolism in wounds. Am J Physiol. 1988 Apr;254(4 Pt 1):E459–E467. doi: 10.1152/ajpendo.1988.254.4.E459. [DOI] [PubMed] [Google Scholar]
  2. Chyun J. H., Griminger P. Improvement of nitrogen retention by arginine and glycine supplementation and its relation to collagen synthesis in traumatized mature and aged rats. J Nutr. 1984 Sep;114(9):1697–1704. doi: 10.1093/jn/114.9.1697. [DOI] [PubMed] [Google Scholar]
  3. Clowes G. H., Jr, Randall H. T., Cha C. J. Amino acid and energy metabolism in septic and traumatized patients. JPEN J Parenter Enteral Nutr. 1980 Mar-Apr;4(2):195–205. doi: 10.1177/014860718000400225. [DOI] [PubMed] [Google Scholar]
  4. Currie G. A., Gyure L., Cifuentes L. Microenvironmental arginine depletion by macrophages in vivo. Br J Cancer. 1979 Jun;39(6):613–620. doi: 10.1038/bjc.1979.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gazzinelli R. T., Oswald I. P., Hieny S., James S. L., Sher A. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. Eur J Immunol. 1992 Oct;22(10):2501–2506. doi: 10.1002/eji.1830221006. [DOI] [PubMed] [Google Scholar]
  6. Gianotti L., Alexander J. W., Pyles T., Fukushima R. Arginine-supplemented diets improve survival in gut-derived sepsis and peritonitis by modulating bacterial clearance. The role of nitric oxide. Ann Surg. 1993 Jun;217(6):644–654. doi: 10.1097/00000658-199306000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  8. Iyengar R., Stuehr D. J., Marletta M. A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6369–6373. doi: 10.1073/pnas.84.18.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morris S. M., Jr, Billiar T. R. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol. 1994 Jun;266(6 Pt 1):E829–E839. doi: 10.1152/ajpendo.1994.266.6.E829. [DOI] [PubMed] [Google Scholar]
  10. Muñoz-Fernández M. A., Fernández M. A., Fresno M. Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-alpha and IFN-gamma through a nitric oxide-dependent mechanism. Immunol Lett. 1992 Jun;33(1):35–40. doi: 10.1016/0165-2478(92)90090-b. [DOI] [PubMed] [Google Scholar]
  11. Nussler A. K., Billiar T. R., Liu Z. Z., Morris S. M., Jr Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem. 1994 Jan 14;269(2):1257–1261. [PubMed] [Google Scholar]
  12. Petray P., Rottenberg M. E., Grinstein S., Orn A. Release of nitric oxide during the experimental infection with Trypanosoma cruzi. Parasite Immunol. 1994 Apr;16(4):193–199. doi: 10.1111/j.1365-3024.1994.tb00340.x. [DOI] [PubMed] [Google Scholar]
  13. Pui Y. M., Fisher H. Factorial supplementation with arginine and glycine on nitrogen retention and body weight gain in the traumatized rat. J Nutr. 1979 Feb;109(2):240–246. doi: 10.1093/jn/109.2.240. [DOI] [PubMed] [Google Scholar]
  14. Reynolds J. V., Daly J. M., Zhang S., Evantash E., Shou J., Sigal R., Ziegler M. M. Immunomodulatory mechanisms of arginine. Surgery. 1988 Aug;104(2):142–151. [PubMed] [Google Scholar]
  15. Sanderson C. J., Thomas J. A., Twomey C. E. The growth of Trypanosoma cruzi in human diploid cells for the production of trypomastigotes. Parasitology. 1980 Feb;80(1):153–162. doi: 10.1017/s0031182000000615. [DOI] [PubMed] [Google Scholar]
  16. Sax H. C., Hasselgren P. O., Talamini M. A., Edwards L. L., Fischer J. E. Amino acid uptake in isolated, perfused liver: effect of trauma and sepsis. J Surg Res. 1988 Jul;45(1):50–55. doi: 10.1016/0022-4804(88)90020-0. [DOI] [PubMed] [Google Scholar]
  17. Tarleton R. L. Regulation of immunity in Trypanosoma cruzi infection. Exp Parasitol. 1991 Jul;73(1):106–109. doi: 10.1016/0014-4894(91)90013-m. [DOI] [PubMed] [Google Scholar]
  18. Vespa G. N., Cunha F. Q., Silva J. S. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Immun. 1994 Nov;62(11):5177–5182. doi: 10.1128/iai.62.11.5177-5182.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu G. Y., Brosnan J. T. Macrophages can convert citrulline into arginine. Biochem J. 1992 Jan 1;281(Pt 1):45–48. doi: 10.1042/bj2810045. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES