Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Aug;63(8):2941–2949. doi: 10.1128/iai.63.8.2941-2949.1995

Shigella infection induces cellular activation of T and B cells and distinct species-related changes in peripheral blood lymphocyte subsets during the course of the disease.

D Islam 1, P K Bardhan 1, A A Lindberg 1, B Christensson 1
PMCID: PMC173400  PMID: 7622216

Abstract

Immunophenotypic changes in peripheral blood lymphocytes (T, B, and NK cells) in patients during shigellosis was characterized by using triple-color flow cytometry. Eleven Shigella dysenteriae 1-infected adult patients (SDIP), 11 Shigella flexneri-infected adult patients (SFIP), 15 age- and sex-matched healthy controls from Bangladesh (C-B), and 15 healthy volunteers from Sweden (V-S) were studied. In SDIP and SFIP, a significant increase in the CD45RO+ cells in both CD4+ and CD8+ T cells were seen. We found evidence for sequential T-cell activation, as shown by increased proportions of CD25 and CD4+ cells; HLA-DR and CD38 on CD8+ cells, and CD54 on CD4+ and CD8+ cells. We found differences in the lymphocyte activation and subset patterns related to the infecting Shigella species. Thus, a decrease in CD45 expression was seen in SFIP; this decrease progressed further during the disease. The proportions of NK cells (CD56+ cells) and CD3- CD8+ cells out of the total CD8+ cells were increased in SFIP but not in SDIP. The CD3+ CD8+ CD57+ T-cell subset was significantly lower in SDIP than in C-B. The proportion of B-lymphocyte-expressing activation markers CD80 and CD23 was higher in patients than in C-B. There was a significant increase in the proportion of CD4+ T cells and a significant decrease in the percentages of total B cells, the CD3+ CD8+ CD57+ T-cell subset, and the CD56+ CD16+ NK-cell subset for V-S compared with C-B. Our results indicate that distinct subset changes and activation patterns are elicited in SDIP compared with SFIP and also that the degree of activation is related to disease severity. In addition, a common sequence of cell activation was seen during the disease course. The difference in the subset patterns seen in C-B and V-S may be related to differences in the levels or spectra of infectious agents in the environment.

Full Text

The Full Text of this article is available as a PDF (329.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam A. N., Islam M. R., Hossain M. S., Mahalanabis D., Hye H. K. Comparison of pivmecillinam and nalidixic acid in the treatment of acute shigellosis in children. Scand J Gastroenterol. 1994 Apr;29(4):313–317. doi: 10.3109/00365529409094842. [DOI] [PubMed] [Google Scholar]
  2. Aubry J. P., Shields J. G., Jansen K. U., Bonnefoy J. Y. A multiparameter flow cytometric method to study surface molecules involved in interactions between subpopulations of cells. J Immunol Methods. 1993 Feb 26;159(1-2):161–171. doi: 10.1016/0022-1759(93)90154-y. [DOI] [PubMed] [Google Scholar]
  3. Bancroft G. J. The role of natural killer cells in innate resistance to infection. Curr Opin Immunol. 1993 Aug;5(4):503–510. doi: 10.1016/0952-7915(93)90030-v. [DOI] [PubMed] [Google Scholar]
  4. Bennish M. L., Wojtyniak B. J. Mortality due to shigellosis: community and hospital data. Rev Infect Dis. 1991 Mar-Apr;13 (Suppl 4):S245–S251. doi: 10.1093/clinids/13.supplement_4.s245. [DOI] [PubMed] [Google Scholar]
  5. Bevilacqua M. P., Pober J. S., Mendrick D. L., Cotran R. S., Gimbrone M. A., Jr Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9238–9242. doi: 10.1073/pnas.84.24.9238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark E. A., Lane P. J. Regulation of human B-cell activation and adhesion. Annu Rev Immunol. 1991;9:97–127. doi: 10.1146/annurev.iy.09.040191.000525. [DOI] [PubMed] [Google Scholar]
  7. Clement L. T. Isoforms of the CD45 common leukocyte antigen family: markers for human T-cell differentiation. J Clin Immunol. 1992 Jan;12(1):1–10. doi: 10.1007/BF00918266. [DOI] [PubMed] [Google Scholar]
  8. De Waele M., Thielemans C., Van Camp B. K. Characterization of immunoregulatory T cells in EBV-induced infectious mononucleosis by monoclonal antibodies. N Engl J Med. 1981 Feb 19;304(8):460–462. doi: 10.1056/NEJM198102193040804. [DOI] [PubMed] [Google Scholar]
  9. Diamond M. S., Staunton D. E., de Fougerolles A. R., Stacker S. A., Garcia-Aguilar J., Hibbs M. L., Springer T. A. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol. 1990 Dec;111(6 Pt 2):3129–3139. doi: 10.1083/jcb.111.6.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dianzani U., Funaro A., DiFranco D., Garbarino G., Bragardo M., Redoglia V., Buonfiglio D., De Monte L. B., Pileri A., Malavasi F. Interaction between endothelium and CD4+CD45RA+ lymphocytes. Role of the human CD38 molecule. J Immunol. 1994 Aug 1;153(3):952–959. [PubMed] [Google Scholar]
  11. Forsgren A., Bredberg A., Riesbeck K. Effect of ciprofloxacin on human lymphocytes--laboratory studies. Scand J Infect Dis Suppl. 1989;60:39–45. [PubMed] [Google Scholar]
  12. Funaro A., Spagnoli G. C., Ausiello C. M., Alessio M., Roggero S., Delia D., Zaccolo M., Malavasi F. Involvement of the multilineage CD38 molecule in a unique pathway of cell activation and proliferation. J Immunol. 1990 Oct 15;145(8):2390–2396. [PubMed] [Google Scholar]
  13. Gordon J. CD23 and B cell activation. Clin Exp Allergy. 1992 Feb;22(2):199–204. doi: 10.1111/j.1365-2222.1992.tb03073.x. [DOI] [PubMed] [Google Scholar]
  14. Guerrant R. L., Hughes J. M., Lima N. L., Crane J. Diarrhea in developed and developing countries: magnitude, special settings, and etiologies. Rev Infect Dis. 1990 Jan-Feb;12 (Suppl 1):S41–S50. doi: 10.1093/clinids/12.Supplement_1.S41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holme E., Greter J., Jacobson C. E., Lindstedt S., Nordin I., Kristiansson B., Jodal U. Carnitine deficiency induced by pivampicillin and pivmecillinam therapy. Lancet. 1989 Aug 26;2(8661):469–473. doi: 10.1016/s0140-6736(89)92086-2. [DOI] [PubMed] [Google Scholar]
  16. Ibegbu C., Spira T. J., Nesheim S., Mendez H., Lee F., Polliotti B., Caba J., Nahmias A. Subpopulations of T and B cells in perinatally HIV-infected and noninfected age-matched children compared with those in adults. Clin Immunol Immunopathol. 1994 Apr;71(1):27–32. doi: 10.1006/clin.1994.1047. [DOI] [PubMed] [Google Scholar]
  17. Islam D., Lindberg A. A., Christensson B. Peripheral blood cell preparation influences the level of expression of leukocyte cell surface markers as assessed with quantitative multicolor flow cytometry. Cytometry. 1995 Jun 15;22(2):128–134. doi: 10.1002/cyto.990220208. [DOI] [PubMed] [Google Scholar]
  18. Kestens L., Vanham G., Gigase P., Young G., Hannet I., Vanlangendonck F., Hulstaert F., Bach B. A. Expression of activation antigens, HLA-DR and CD38, on CD8 lymphocytes during HIV-1 infection. AIDS. 1992 Aug;6(8):793–797. doi: 10.1097/00002030-199208000-00004. [DOI] [PubMed] [Google Scholar]
  19. Klimpel G. R., Niesel D. W., Klimpel K. D. Natural cytotoxic effector cell activity against Shigella flexneri-infected HeLa cells. J Immunol. 1986 Feb 1;136(3):1081–1086. [PubMed] [Google Scholar]
  20. Koch A. E., Robinson P. G., Radosevich J. A., Pope R. M. Distribution of CD45RA and CD45RO T-lymphocyte subsets in rheumatoid arthritis synovial tissue. J Clin Immunol. 1990 Jul;10(4):192–199. doi: 10.1007/BF00918651. [DOI] [PubMed] [Google Scholar]
  21. Konttinen Y., Bergroth V., Nykänen P. Lymphocyte activation in rheumatoid arthritis synovial fluid in vivo. Scand J Immunol. 1985 Nov;22(5):503–507. doi: 10.1111/j.1365-3083.1985.tb01909.x. [DOI] [PubMed] [Google Scholar]
  22. Koulova L., Clark E. A., Shu G., Dupont B. The CD28 ligand B7/BB1 provides costimulatory signal for alloactivation of CD4+ T cells. J Exp Med. 1991 Mar 1;173(3):759–762. doi: 10.1084/jem.173.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Landay A. L., Mackewicz C. E., Levy J. A. An activated CD8+ T cell phenotype correlates with anti-HIV activity and asymptomatic clinical status. Clin Immunol Immunopathol. 1993 Oct;69(1):106–116. doi: 10.1006/clin.1993.1157. [DOI] [PubMed] [Google Scholar]
  24. Lanier L. L., Warner N. L. Paraformaldehyde fixation of hematopoietic cells for quantitative flow cytometry (FACS) analysis. J Immunol Methods. 1981;47(1):25–30. doi: 10.1016/0022-1759(81)90253-2. [DOI] [PubMed] [Google Scholar]
  25. Levacher M., Hulstaert F., Tallet S., Ullery S., Pocidalo J. J., Bach B. A. The significance of activation markers on CD8 lymphocytes in human immunodeficiency syndrome: staging and prognostic value. Clin Exp Immunol. 1992 Dec;90(3):376–382. doi: 10.1111/j.1365-2249.1992.tb05854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lifson J. D., Sasaki D. T., Engleman E. G. Utility of formaldehyde fixation for flow cytometry and inactivation of the AIDS associated retrovirus. J Immunol Methods. 1986 Jan 22;86(1):143–149. doi: 10.1016/0022-1759(86)90278-4. [DOI] [PubMed] [Google Scholar]
  27. Lorenz H. M., Lagoo A. S., Hardy K. J. The cell and molecular basis of leukocyte common antigen (CD45)-triggered, lymphocyte function-associated antigen-1-/intercellular adhesion molecule-1-dependent, leukocyte adhesion. Blood. 1994 Apr 1;83(7):1862–1870. [PubMed] [Google Scholar]
  28. Mackay C. R., Imhof B. A. Cell adhesion in the immune system. Immunol Today. 1993 Mar;14(3):99–102. doi: 10.1016/0167-5699(93)90205-Y. [DOI] [PubMed] [Google Scholar]
  29. Morimoto C., Hafler D. A., Weiner H. L., Letvin N. L., Hagan M., Daley J., Schlossman S. F. Selective loss of the suppressor-inducer T-cell subset in progressive multiple sclerosis. Analysis with anti-2H4 monoclonal antibody. N Engl J Med. 1987 Jan 8;316(2):67–72. doi: 10.1056/NEJM198701083160202. [DOI] [PubMed] [Google Scholar]
  30. Morimoto C., Steinberg A. D., Letvin N. L., Hagan M., Takeuchi T., Daley J., Levine H., Schlossman S. F. A defect of immunoregulatory T cell subsets in systemic lupus erythematosus patients demonstrated with anti-2H4 antibody. J Clin Invest. 1987 Mar;79(3):762–768. doi: 10.1172/JCI112882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Munshi M. H., Sack D. A., Haider K., Ahmed Z. U., Rahaman M. M., Morshed M. G. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type 1. Lancet. 1987 Aug 22;2(8556):419–421. doi: 10.1016/s0140-6736(87)90957-3. [DOI] [PubMed] [Google Scholar]
  32. Murphy M., Epstein L. B. Down syndrome (DS) peripheral blood contains phenotypically mature CD3+TCR alpha, beta+ cells but abnormal proportions of TCR alpha, beta+, TCR gamma, delta+, and CD4+ CD45RA+ cells: evidence for an inefficient release of mature T cells by the DS thymus. Clin Immunol Immunopathol. 1992 Feb;62(2):245–251. doi: 10.1016/0090-1229(92)90079-4. [DOI] [PubMed] [Google Scholar]
  33. Nelson M. R., Shanson D. C., Hawkins D. A., Gazzard B. G. Salmonella, Campylobacter and Shigella in HIV-seropositive patients. AIDS. 1992 Dec;6(12):1495–1498. doi: 10.1097/00002030-199212000-00012. [DOI] [PubMed] [Google Scholar]
  34. Pallone F., Fais S., Squarcia O., Biancone L., Pozzilli P., Boirivant M. Activation of peripheral blood and intestinal lamina propria lymphocytes in Crohn's disease. In vivo state of activation and in vitro response to stimulation as defined by the expression of early activation antigens. Gut. 1987 Jun;28(6):745–753. doi: 10.1136/gut.28.6.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Plaeger-Marshall S., Isacescu V., O'Rourke S., Bertolli J., Bryson Y. J., Stiehm E. R. T cell activation in pediatric AIDS pathogenesis: three-color immunophenotyping. Clin Immunol Immunopathol. 1994 Apr;71(1):19–26. doi: 10.1006/clin.1994.1046. [DOI] [PubMed] [Google Scholar]
  36. Raedler A., Fraenkel S., Klose G., Thiele H. G. Elevated numbers of peripheral T cells in inflammatory bowel diseases displaying T9 antigen and Fc alpha receptors. Clin Exp Immunol. 1985 Jun;60(3):518–524. [PMC free article] [PubMed] [Google Scholar]
  37. Raqib R., Lindberg A. A., Wretlind B., Bardhan P. K., Andersson U., Andersson J. Persistence of local cytokine production in shigellosis in acute and convalescent stages. Infect Immun. 1995 Jan;63(1):289–296. doi: 10.1128/iai.63.1.289-296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reichert T., DeBruyère M., Deneys V., Tötterman T., Lydyard P., Yuksel F., Chapel H., Jewell D., Van Hove L., Linden J. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol. 1991 Aug;60(2):190–208. doi: 10.1016/0090-1229(91)90063-g. [DOI] [PubMed] [Google Scholar]
  39. Schlesinger M., Granot E., Rabinowitz R., Deckelbaum R. J. Peripheral blood lymphocyte subsets in infants with diarrhea with and without Giardia lamblia infection. Pediatr Res. 1993 Jan;33(1):15–18. doi: 10.1203/00006450-199301000-00004. [DOI] [PubMed] [Google Scholar]
  40. Schreiber S., MacDermott R. P., Raedler A., Pinnau R., Bertovich M. J., Nash G. S. Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology. 1991 Oct;101(4):1020–1030. doi: 10.1016/0016-5085(91)90729-5. [DOI] [PubMed] [Google Scholar]
  41. Schwartz A., Fernández-Repollet E. Development of clinical standards for flow cytometry. Ann N Y Acad Sci. 1993 Mar 20;677:28–39. doi: 10.1111/j.1749-6632.1993.tb38760.x. [DOI] [PubMed] [Google Scholar]
  42. Sinha A. K., Chakraborti M. K., Chakraborti S. Gut mucosal lymphocyte subpopulations in the host-defence of Shigella infected guinea-pigs. Immunol Lett. 1992 Mar;32(1):65–68. doi: 10.1016/0165-2478(92)90200-8. [DOI] [PubMed] [Google Scholar]
  43. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  44. Thomas M. L. The regulation of B- and T-lymphocyte activation by the transmembrane protein tyrosine phosphatase CD45. Curr Opin Cell Biol. 1994 Apr;6(2):247–252. doi: 10.1016/0955-0674(94)90143-0. [DOI] [PubMed] [Google Scholar]
  45. Tollerud D. J., Clark J. W., Brown L. M., Neuland C. Y., Pankiw-Trost L. K., Blattner W. A., Hoover R. N. The influence of age, race, and gender on peripheral blood mononuclear-cell subsets in healthy nonsmokers. J Clin Immunol. 1989 May;9(3):214–222. doi: 10.1007/BF00916817. [DOI] [PubMed] [Google Scholar]
  46. Trowbridge I. S., Ostergaard H. L., Johnson P. CD45: a leukocyte-specific member of the protein tyrosine phosphatase family. Biochim Biophys Acta. 1991 Oct 16;1095(1):46–56. doi: 10.1016/0167-4889(91)90043-w. [DOI] [PubMed] [Google Scholar]
  47. Willett B. J., Hosie M. J., Callanan J. J., Neil J. C., Jarrett O. Infection with feline immunodeficiency virus is followed by the rapid expansion of a CD8+ lymphocyte subset. Immunology. 1993 Jan;78(1):1–6. [PMC free article] [PubMed] [Google Scholar]
  48. Yanase Y., Tango T., Okumura K., Tada T., Kawasaki T. A comparative study of alteration in lymphocyte subsets among varicella, hand-foot-and-mouth disease, scarlet fever, measles, and Kawasaki disease. Microbiol Immunol. 1987;31(7):701–710. doi: 10.1111/j.1348-0421.1987.tb03131.x. [DOI] [PubMed] [Google Scholar]
  49. Zwillich S. H., Duby A. D., Lipsky P. E. T-lymphocyte clones responsive to Shigella flexneri. J Clin Microbiol. 1989 Mar;27(3):417–421. doi: 10.1128/jcm.27.3.417-421.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES