Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1999 Dec;36(12):914–918.

Neocentromere formation in a stable ring 1p32-p36.1 chromosome

H Slater 1, S Nouri 1, E Earle 1, A Lo 1, L Hale 1, K Choo 1
PMCID: PMC1734276  PMID: 10593999

Abstract

Neocentromeres are functional centromeres formed in chromosome regions outside the normal centromere domains and are found in an increasing number of mitotically stable human marker chromosomes in both neoplastic and non-neoplastic cells. We describe here the formation of a neocentromere in a previously undescribed chromosomal region at 1p32→p36.1 in an oligospermic patient. Cytogenetic GTL banding analysis and the absence of detectable fluorescence in situ hybridisation (FISH) signals using telomeric probes indicate the marker to be a ring chromosome. The chromosome is negative for CBG banding and is devoid of detectable centromeric α satellite and its associated centromere protein CENP-B, suggesting activation of a neocentromere within the 1p32-36.1 region. Functional activity of the neocentromere is shown by the retention of the ring chromosome in 97% of the patient's lymphocytes and 100% of his cultured fibroblasts, as well as by the presence of key centromere binding proteins CENP-E, CENP-F, and INCENP. These results indicate that in addition to CENP-A, CENP-C, and CENP-E described in earlier studies, neocentromere activity can further be defined by CENP-F and INCENP binding. Our evidence suggests that neocentromere formation constitutes a viable mechanism for the mitotic stabilisation of acentric ring chromosomes.


Keywords: neocentromere; centromere proteins; α satellite DNA; chromosome 1

Full Text

The Full Text of this article is available as a PDF (143.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cancilla M. R., Tainton K. M., Barry A. E., Larionov V., Kouprina N., Resnick M. A., Sart D. D., Choo K. H. Direct cloning of human 10q25 neocentromere DNA using transformation-associated recombination (TAR) in yeast. Genomics. 1998 Feb 1;47(3):399–404. doi: 10.1006/geno.1997.5129. [DOI] [PubMed] [Google Scholar]
  2. Chan G. K., Schaar B. T., Yen T. J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol. 1998 Oct 5;143(1):49–63. doi: 10.1083/jcb.143.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choo K. H. Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet. 1997 Dec;61(6):1225–1233. doi: 10.1086/301657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Depinet T. W., Zackowski J. L., Earnshaw W. C., Kaffe S., Sekhon G. S., Stallard R., Sullivan B. A., Vance G. H., Van Dyke D. L., Willard H. F. Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum Mol Genet. 1997 Aug;6(8):1195–1204. doi: 10.1093/hmg/6.8.1195. [DOI] [PubMed] [Google Scholar]
  5. Earnshaw W. C., Cooke C. A. Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation. J Cell Sci. 1991 Apr;98(Pt 4):443–461. doi: 10.1242/jcs.98.4.443. [DOI] [PubMed] [Google Scholar]
  6. Faulkner N. E., Vig B., Echeverri C. J., Wordeman L., Vallee R. B. Localization of motor-related proteins and associated complexes to active, but not inactive, centromeres. Hum Mol Genet. 1998 Apr;7(4):671–677. doi: 10.1093/hmg/7.4.671. [DOI] [PubMed] [Google Scholar]
  7. Harrington J. J., Van Bokkelen G., Mays R. W., Gustashaw K., Willard H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet. 1997 Apr;15(4):345–355. doi: 10.1038/ng0497-345. [DOI] [PubMed] [Google Scholar]
  8. Hudson D. F., Fowler K. J., Earle E., Saffery R., Kalitsis P., Trowell H., Hill J., Wreford N. G., de Kretser D. M., Cancilla M. R. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol. 1998 Apr 20;141(2):309–319. doi: 10.1083/jcb.141.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ikeno M., Grimes B., Okazaki T., Nakano M., Saitoh K., Hoshino H., McGill N. I., Cooke H., Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol. 1998 May;16(5):431–439. doi: 10.1038/nbt0598-431. [DOI] [PubMed] [Google Scholar]
  10. MacDermot K. D., Jack E., Cooke A., Turleau C., Lindenbaum R. H., Pearson J., Patel C., Barnes P. M., Portch J., Crawfurd M. D. Investigation of three patients with the "ring syndrome", including familial transmission of ring 5, and estimation of reproductive risks. Hum Genet. 1990 Oct;85(5):516–520. doi: 10.1007/BF00194228. [DOI] [PubMed] [Google Scholar]
  11. Mackay A. M., Ainsztein A. M., Eckley D. M., Earnshaw W. C. A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J Cell Biol. 1998 Mar 9;140(5):991–1002. doi: 10.1083/jcb.140.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Muro Y., Masumoto H., Yoda K., Nozaki N., Ohashi M., Okazaki T. Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J Cell Biol. 1992 Feb;116(3):585–596. doi: 10.1083/jcb.116.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pluta A. F., Cooke C. A., Earnshaw W. C. Structure of the human centromere at metaphase. Trends Biochem Sci. 1990 May;15(5):181–185. doi: 10.1016/0968-0004(90)90158-8. [DOI] [PubMed] [Google Scholar]
  14. Schmidt M., Du Sart D. Functional disomies of the X chromosome influence the cell selection and hence the X inactivation pattern in females with balanced X-autosome translocations: a review of 122 cases. Am J Med Genet. 1992 Jan 15;42(2):161–169. doi: 10.1002/ajmg.1320420205. [DOI] [PubMed] [Google Scholar]
  15. Sullivan B. A., Schwartz S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet. 1995 Dec;4(12):2189–2197. doi: 10.1093/hmg/4.12.2189. [DOI] [PubMed] [Google Scholar]
  16. Thrower D. A., Jordan M. A., Schaar B. T., Yen T. J., Wilson L. Mitotic HeLa cells contain a CENP-E-associated minus end-directed microtubule motor. EMBO J. 1995 Mar 1;14(5):918–926. doi: 10.1002/j.1460-2075.1995.tb07073.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Voullaire L. E., Slater H. R., Petrovic V., Choo K. H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet. 1993 Jun;52(6):1153–1163. [PMC free article] [PubMed] [Google Scholar]
  18. Williams B. C., Murphy T. D., Goldberg M. L., Karpen G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet. 1998 Jan;18(1):30–37. doi: 10.1038/ng0198-30. [DOI] [PubMed] [Google Scholar]
  19. du Sart D., Cancilla M. R., Earle E., Mao J. I., Saffery R., Tainton K. M., Kalitsis P., Martyn J., Barry A. E., Choo K. H. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet. 1997 Jun;16(2):144–153. doi: 10.1038/ng0697-144. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES