Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1999 Feb;36(2):112–114.

Analysis of spinocerebellar ataxia type 2 gene and haplotype analysis: (CCG)1- 2 polymorphism and contribution to founder effect

K Mizushima 1, M Watanabe 1, I Kondo 1, K Okamoto 1, M Shizuka 1, K Abe 1, M Aoki 1, M Shoji 1
PMCID: PMC1734293  PMID: 10051008

Abstract

Spinocerebellar ataxia type 2 is a familial spinocerebellar ataxia with autosomal dominant inheritance. The gene responsible was recently cloned and this disorder was found to be the result of a CAG expansion in its open reading frame. We analysed 13 SCA2 patients in seven unrelated families in Gunma Prefecture, Japan. In four of the seven families, we detected CCG or CCGCCG interruptions in only the expanded alleles. Cosegregation of these polymorphisms with SCA2 patients was established within each family. Together with the results of haplotype analyses, we considered that at least two founders were present in our area and that these (CCG)1-2 polymorphisms may make analysis of founder effects easier. By sequencing analysis we found that although the number of the long CAG repeat varied in each subclone of expanded alleles, these polymorphisms did not change their configuration. This finding suggests that CCG or CCGCCG sequences are stable when surrounded by the long CAG repeat and a single CAG. Moreover, the presence of these polymorphisms may lead to miscounting the repeat size by conventional estimation using a size marker such as an M13 sequencing ladder. Therefore we should consider these polymorphisms and accurately determine the repeat size by sequencing.


Keywords: spinocerebellar ataxia type 2; CCG repeat polymorphism; founder effect

Full Text

The Full Text of this article is available as a PDF (85.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allotey R., Twells R., Cemal C., Norte B. S., Weissenbach J., Pook M., Williamson R., Chamberlain S. The spinocerebellar ataxia 2 locus is located within a 3-cM interval on chromosome 12q23-24.1. Am J Hum Genet. 1995 Jul;57(1):185–189. [PMC free article] [PubMed] [Google Scholar]
  2. Andrew S. E., Goldberg Y. P., Theilmann J., Zeisler J., Hayden M. R. A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum Mol Genet. 1994 Jan;3(1):65–67. doi: 10.1093/hmg/3.1.65. [DOI] [PubMed] [Google Scholar]
  3. Aoki M., Abe K., Kameya T., Watanabe M., Itoyama Y. Maternal anticipation of DRPLA. Hum Mol Genet. 1994 Jul;3(7):1197–1198. doi: 10.1093/hmg/3.7.1197. [DOI] [PubMed] [Google Scholar]
  4. Barron L. H., Rae A., Holloway S., Brock D. J., Warner J. P. A single allele from the polymorphic CCG rich sequence immediately 3' to the unstable CAG trinucleotide in the IT15 cDNA shows almost complete disequilibrium with Huntington's disease chromosomes in the Scottish population. Hum Mol Genet. 1994 Jan;3(1):173–175. doi: 10.1093/hmg/3.1.173. [DOI] [PubMed] [Google Scholar]
  5. David G., Abbas N., Stevanin G., Dürr A., Yvert G., Cancel G., Weber C., Imbert G., Saudou F., Antoniou E. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997 Sep;17(1):65–70. doi: 10.1038/ng0997-65. [DOI] [PubMed] [Google Scholar]
  6. Geschwind D. H., Perlman S., Figueroa C. P., Treiman L. J., Pulst S. M. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997 Apr;60(4):842–850. [PMC free article] [PubMed] [Google Scholar]
  7. Imbert G., Saudou F., Yvert G., Devys D., Trottier Y., Garnier J. M., Weber C., Mandel J. L., Cancel G., Abbas N. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996 Nov;14(3):285–291. doi: 10.1038/ng1196-285. [DOI] [PubMed] [Google Scholar]
  8. Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S., Kawakami H., Nakamura S., Nishimura M., Akiguchi I. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994 Nov;8(3):221–228. doi: 10.1038/ng1194-221. [DOI] [PubMed] [Google Scholar]
  9. Koide R., Ikeuchi T., Onodera O., Tanaka H., Igarashi S., Endo K., Takahashi H., Kondo R., Ishikawa A., Hayashi T. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994 Jan;6(1):9–13. doi: 10.1038/ng0194-9. [DOI] [PubMed] [Google Scholar]
  10. La Spada A. R., Wilson E. M., Lubahn D. B., Harding A. E., Fischbeck K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991 Jul 4;352(6330):77–79. doi: 10.1038/352077a0. [DOI] [PubMed] [Google Scholar]
  11. Maddox J. Triplet repeat genes raise questions. Nature. 1994 Apr 21;368(6473):685–685. doi: 10.1038/368685a0. [DOI] [PubMed] [Google Scholar]
  12. Nagafuchi S., Yanagisawa H., Sato K., Shirayama T., Ohsaki E., Bundo M., Takeda T., Tadokoro K., Kondo I., Murayama N. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994 Jan;6(1):14–18. doi: 10.1038/ng0194-14. [DOI] [PubMed] [Google Scholar]
  13. Orr H. T., Chung M. Y., Banfi S., Kwiatkowski T. J., Jr, Servadio A., Beaudet A. L., McCall A. E., Duvick L. A., Ranum L. P., Zoghbi H. Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993 Jul;4(3):221–226. doi: 10.1038/ng0793-221. [DOI] [PubMed] [Google Scholar]
  14. Pulst S. M., Nechiporuk A., Nechiporuk T., Gispert S., Chen X. N., Lopes-Cendes I., Pearlman S., Starkman S., Orozco-Diaz G., Lunkes A. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996 Nov;14(3):269–276. doi: 10.1038/ng1196-269. [DOI] [PubMed] [Google Scholar]
  15. Rosenberg R. N. Autosomal dominant cerebellar phenotypes: the genotype has settled the issue. Neurology. 1995 Jan;45(1):1–5. doi: 10.1212/wnl.45.1.1. [DOI] [PubMed] [Google Scholar]
  16. Sanpei K., Takano H., Igarashi S., Sato T., Oyake M., Sasaki H., Wakisaka A., Tashiro K., Ishida Y., Ikeuchi T. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 1996 Nov;14(3):277–284. doi: 10.1038/ng1196-277. [DOI] [PubMed] [Google Scholar]
  17. Watanabe M., Abe K., Aoki M., Kameya T., Kaneko J., Shoji M., Ikeda M., Shizuka M., Ikeda Y., Iizuka T. Analysis of CAG trinucleotide expansion associated with Machado-Joseph disease. J Neurol Sci. 1996 Mar;136(1-2):101–107. doi: 10.1016/0022-510x(95)00307-n. [DOI] [PubMed] [Google Scholar]
  18. Watanabe M., Abe K., Aoki M., Yasuo K., Itoyama Y., Shoji M., Ikeda Y., Iizuka T., Ikeda M., Shizuka M. Mitotic and meiotic stability of the CAG repeat in the X-linked spinal and bulbar muscular atrophy gene. Clin Genet. 1996 Sep;50(3):133–137. doi: 10.1111/j.1399-0004.1996.tb02367.x. [DOI] [PubMed] [Google Scholar]
  19. Zhuchenko O., Bailey J., Bonnen P., Ashizawa T., Stockton D. W., Amos C., Dobyns W. B., Subramony S. H., Zoghbi H. Y., Lee C. C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997 Jan;15(1):62–69. doi: 10.1038/ng0197-62. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES