Abstract
In this study, we have examined CDKN1C expression in BWS patients with allele imbalance (AI) affecting the 11p15 region. Two of two informative patients with AI, attributable to mosaic paternal isodisomy, exhibited reduced levels of CDKN1C expression in the liver and kidney, respectively, relative to expression levels in the equivalent tissues in normal controls. Although overall expression was reduced, some expression from the paternally derived CDKN1C allele was evident, consistent with incomplete paternal imprinting of the gene. One patient showed evidence of maternal allele silencing in addition to AI. These findings show for the first time that CDKN1C expression is reduced in BWS patients with AI and suggest that CDKN1C haploinsufficiency contributes to the BWS phenotype in patients with mosaic paternal isodisomies of chromosome 11. Keywords: CDKN1C; Beckwith-Wiedemann syndrome; allele imbalance
Full Text
The Full Text of this article is available as a PDF (113.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Algar E. M., Kenney M. T., Simms L. A., Smith S. I., Kida Y., Smith P. J. Homozygous intragenic deletion in the WT1 gene in a sporadic Wilms' tumour associated with high levels of expression of a truncated transcript. Hum Mutat. 1995;5(3):221–227. doi: 10.1002/humu.1380050306. [DOI] [PubMed] [Google Scholar]
- Algar E., Blackburn D., Kromykh T., Taylor G., Smith P. Mutation analysis of the WT1 gene in sporadic childhood leukaemia. Leukemia. 1997 Jan;11(1):110–113. doi: 10.1038/sj.leu.2400521. [DOI] [PubMed] [Google Scholar]
- Brown K. W., Villar A. J., Bickmore W., Clayton-Smith J., Catchpoole D., Maher E. R., Reik W. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet. 1996 Dec;5(12):2027–2032. doi: 10.1093/hmg/5.12.2027. [DOI] [PubMed] [Google Scholar]
- Catchpoole D., Lam W. W., Valler D., Temple I. K., Joyce J. A., Reik W., Schofield P. N., Maher E. R. Epigenetic modification and uniparental inheritance of H19 in Beckwith-Wiedemann syndrome. J Med Genet. 1997 May;34(5):353–359. doi: 10.1136/jmg.34.5.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eggenschwiler J., Ludwig T., Fisher P., Leighton P. A., Tilghman S. M., Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev. 1997 Dec 1;11(23):3128–3142. doi: 10.1101/gad.11.23.3128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott M., Maher E. R. Beckwith-Wiedemann syndrome. J Med Genet. 1994 Jul;31(7):560–564. doi: 10.1136/jmg.31.7.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gen M. W., Parry P. J., Ning Y., Evans G. A. Highly polymorphic tetramer repeat (GATA)n on human chromosome 11p15.3. Genomics. 1993 Sep;17(3):770–772. doi: 10.1006/geno.1993.1405. [DOI] [PubMed] [Google Scholar]
- Golay J., Passerini F., Introna M. A simple and rapid method to analyze specific mRNAs from few cells in a semi-quantitative way using the polymerase chain reaction. PCR Methods Appl. 1991 Nov;1(2):144–145. doi: 10.1101/gr.1.2.144. [DOI] [PubMed] [Google Scholar]
- Hatada I., Nabetani A., Morisaki H., Xin Z., Ohishi S., Tonoki H., Niikawa N., Inoue M., Komoto Y., Okada A. New p57KIP2 mutations in Beckwith-Wiedemann syndrome. Hum Genet. 1997 Oct;100(5-6):681–683. doi: 10.1007/s004390050573. [DOI] [PubMed] [Google Scholar]
- Hatada I., Ohashi H., Fukushima Y., Kaneko Y., Inoue M., Komoto Y., Okada A., Ohishi S., Nabetani A., Morisaki H. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996 Oct;14(2):171–173. doi: 10.1038/ng1096-171. [DOI] [PubMed] [Google Scholar]
- Howard T. K., Algar E. M., Glatz J. A., Reeve A. E., Smith P. J. The insulin-like growth factor 1 receptor gene is normally biallelically expressed in human juvenile tissue and tumours. Hum Mol Genet. 1993 Dec;2(12):2089–2092. doi: 10.1093/hmg/2.12.2089. [DOI] [PubMed] [Google Scholar]
- Lee M. P., DeBaun M., Randhawa G., Reichard B. A., Elledge S. J., Feinberg A. P. Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am J Hum Genet. 1997 Aug;61(2):304–309. doi: 10.1086/514858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little M., Van Heyningen V., Hastie N. Dads and disomy and disease. Nature. 1991 Jun 20;351(6328):609–610. doi: 10.1038/351609a0. [DOI] [PubMed] [Google Scholar]
- Matsuoka S., Thompson J. S., Edwards M. C., Bartletta J. M., Grundy P., Kalikin L. M., Harper J. W., Elledge S. J., Feinberg A. P. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3026–3030. doi: 10.1073/pnas.93.7.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nyström A., Hedborg F., Ohlsson R. Insulin-like growth factor 2 cannot be linked to a familial form of Beckwith-Wiedemann syndrome. Eur J Pediatr. 1994 Aug;153(8):574–580. doi: 10.1007/BF02190661. [DOI] [PubMed] [Google Scholar]
- O'Keefe D., Dao D., Zhao L., Sanderson R., Warburton D., Weiss L., Anyane-Yeboa K., Tycko B. Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet. 1997 Aug;61(2):295–303. doi: 10.1086/514854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeve A. E. Role of genomic imprinting in Wilms' tumour and overgrowth disorders. Med Pediatr Oncol. 1996 Nov;27(5):470–475. doi: 10.1002/(SICI)1096-911X(199611)27:5<470::AID-MPO14>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
- Sun F. L., Dean W. L., Kelsey G., Allen N. D., Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature. 1997 Oct 23;389(6653):809–815. doi: 10.1038/39797. [DOI] [PubMed] [Google Scholar]
- Thompson J. S., Reese K. J., DeBaun M. R., Perlman E. J., Feinberg A. P. Reduced expression of the cyclin-dependent kinase inhibitor gene p57KIP2 in Wilms' tumor. Cancer Res. 1996 Dec 15;56(24):5723–5727. [PubMed] [Google Scholar]
- Tokino T., Urano T., Furuhata T., Matsushima M., Miyatsu T., Sasaki S., Nakamura Y. Characterization of the human p57KIP2 gene: alternative splicing, insertion/deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis. Hum Genet. 1996 May;97(5):625–631. doi: 10.1007/BF02281873. [DOI] [PubMed] [Google Scholar]
- Viljoen D., Ramesar R. Evidence for paternal imprinting in familial Beckwith-Wiedemann syndrome. J Med Genet. 1992 Apr;29(4):221–225. doi: 10.1136/jmg.29.4.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
- Zhang P., Liégeois N. J., Wong C., Finegold M., Hou H., Thompson J. C., Silverman A., Harper J. W., DePinho R. A., Elledge S. J. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997 May 8;387(6629):151–158. doi: 10.1038/387151a0. [DOI] [PubMed] [Google Scholar]
