Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1999 Sep;36(9):691–693.

Genetic analysis of the guanylate cyclase activator 1B (GUCA1B) gene in patients with autosomal dominant retinal dystrophies

A Payne 1, S Downes 1, D Bessant 1, C Plant 1, T Moore 1, A Bird 1, S Bhattacharya 1
PMCID: PMC1734430  PMID: 10507726

Abstract

The guanylate cyclase activator proteins (GCAP1 and GCAP2) are calcium binding proteins which by activating Ret-GC1 play a key role in the recovery phase of phototransduction. Recently a mutation in the GUCA1A gene (coding for GCAP1) mapping to the 6p21.1 region was described as causing cone dystrophy in a British family. In addition mutations in Ret-GC1 have been shown to cause Leber congenital amaurosis and cone-rod dystrophy. To determine whether GCAP2 is involved in dominant retinal degenerative diseases, the GCAP2 gene was screened in 400 unrelated subjects with autosomal dominant central and peripheral retinal dystrophies.
A number of changes involving the intronic as well as the coding sequence were observed. In exon 1 a T to C nucleotide change was observed leaving the tyrosine residue 57 unchanged. In exon 3 a 1 bp intronic insertion, a single nucleotide substitution G to A in the intron 3' of this exon, and a GAG to GAT change at codon 155 were observed. This latter change results in a conservative change of glutamic acid to aspartic acid. In exon 4 a 7 bp intronic insertion, a single nucleotide A to G substitution in the intron 5' of this exon, and a single base pair change C to G in the intron 3' of exon 4 were seen. None of these changes would be expected to affect correct splicing of this gene. All these changes were observed in controls. The results of this study do not show any evidence so far that GCAP2 is involved in the pathogenesis of autosomal dominant retinal degeneration in this group of patients. All the changes detected were found to be sequence variations or polymorphisms and not disease causing.


Keywords: guanylate cyclase activator protein 2 (GCAP2); retinal dystrophy; mutation screening

Full Text

The Full Text of this article is available as a PDF (62.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cuenca N., Lopez S., Howes K., Kolb H. The localization of guanylyl cyclase-activating proteins in the mammalian retina. Invest Ophthalmol Vis Sci. 1998 Jun;39(7):1243–1250. [PubMed] [Google Scholar]
  2. Dizhoor A. M., Hurley J. B. Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced "activator-to-inhibitor" transition. J Biol Chem. 1996 Aug 9;271(32):19346–19350. doi: 10.1074/jbc.271.32.19346. [DOI] [PubMed] [Google Scholar]
  3. Dryja T. P., Hahn L. B., Reboul T., Arnaud B. Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet. 1996 Jul;13(3):358–360. doi: 10.1038/ng0796-358. [DOI] [PubMed] [Google Scholar]
  4. Gorczyca W. A., Polans A. S., Surgucheva I. G., Subbaraya I., Baehr W., Palczewski K. Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem. 1995 Sep 15;270(37):22029–22036. doi: 10.1074/jbc.270.37.22029. [DOI] [PubMed] [Google Scholar]
  5. Keen J., Lester D., Inglehearn C., Curtis A., Bhattacharya S. Rapid detection of single base mismatches as heteroduplexes on Hydrolink gels. Trends Genet. 1991 Jan;7(1):5–5. doi: 10.1016/0168-9525(91)90004-a. [DOI] [PubMed] [Google Scholar]
  6. Kelsell R. E., Gregory-Evans K., Payne A. M., Perrault I., Kaplan J., Yang R. B., Garbers D. L., Bird A. C., Moore A. T., Hunt D. M. Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet. 1998 Jul;7(7):1179–1184. doi: 10.1093/hmg/7.7.1179. [DOI] [PubMed] [Google Scholar]
  7. Laura R. P., Dizhoor A. M., Hurley J. B. The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J Biol Chem. 1996 May 17;271(20):11646–11651. doi: 10.1074/jbc.271.20.11646. [DOI] [PubMed] [Google Scholar]
  8. Moncrief N. D., Kretsinger R. H., Goodman M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol. 1990 Jun;30(6):522–562. doi: 10.1007/BF02101108. [DOI] [PubMed] [Google Scholar]
  9. Otto-Bruc A., Fariss R. N., Haeseleer F., Huang J., Buczyłko J., Surgucheva I., Baehr W., Milam A. H., Palczewski K. Localization of guanylate cyclase-activating protein 2 in mammalian retinas. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4727–4732. doi: 10.1073/pnas.94.9.4727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Payne A. M., Downes S. M., Bessant D. A., Taylor R., Holder G. E., Warren M. J., Bird A. C., Bhattacharya S. S. A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet. 1998 Feb;7(2):273–277. doi: 10.1093/hmg/7.2.273. [DOI] [PubMed] [Google Scholar]
  11. Perrault I., Rozet J. M., Calvas P., Gerber S., Camuzat A., Dollfus H., Châtelin S., Souied E., Ghazi I., Leowski C. Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet. 1996 Dec;14(4):461–464. doi: 10.1038/ng1296-461. [DOI] [PubMed] [Google Scholar]
  12. Polans A., Baehr W., Palczewski K. Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci. 1996 Dec;19(12):547–554. doi: 10.1016/s0166-2236(96)10059-x. [DOI] [PubMed] [Google Scholar]
  13. Sokal I., Li N., Surgucheva I., Warren M. J., Payne A. M., Bhattacharya S. S., Baehr W., Palczewski K. GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell. 1998 Jul;2(1):129–133. doi: 10.1016/s1097-2765(00)80121-5. [DOI] [PubMed] [Google Scholar]
  14. Surguchov A., Bronson J. D., Banerjee P., Knowles J. A., Ruiz C., Subbaraya I., Palczewski K., Baehr W. The human GCAP1 and GCAP2 genes are arranged in a tail-to-tail array on the short arm of chromosome 6 (p21.1). Genomics. 1997 Feb 1;39(3):312–322. doi: 10.1006/geno.1996.4513. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES