Abstract
Mutations in the gene for fibrillin-1 (FBN1) have been shown to cause Marfan syndrome, an autosomal dominant disorder of connective tissue characterised by pleiotropic manifestations involving primarily the ocular, skeletal, and cardiovascular systems. Fibrillin-1 is a major component of the 10-12 nm microfibrils, which are thought to play a role in tropoelastin deposition and elastic fibre formation in addition to possessing an anchoring function in some tissues. Fibrillin-1 mutations have also been found in patients who do not fulfil clinical criteria for the diagnosis of Marfan syndrome, but have related disorders of connective tissue, such as isolated ectopia lentis, familial aortic aneurysm, and Marfan-like skeletal abnormalities, so that Marfan syndrome may be regarded as one of a range of type 1 fibrillinopathies. There appear to be no particular hot spots since mutations are found throughout the entire fibrillin-1 gene. However, a clustering of mutations associated with the most severe form of Marfan syndrome, neonatal Marfan syndrome, has been noted in a region encompassing exons 24 to 32. The gene for fibrillin-2 (FBN2) is highly homologous to FBN1, and mutations in FBN2 have been shown to cause a phenotypically related disorder termed congenital contractural arachnodactyly. Since mutations in the fibrillin genes are likely to affect the global function of the microfibrils, the term microfibrillopathy may be the most appropriate to designate the spectrum of disease associated with dysfunction of these molecules. The understanding of the global and the molecular functions of the fibrillin containing microfibrils is still incomplete and, correspondingly, no comprehensive theory of the pathogenesis of Marfan syndrome has emerged to date. Many, but not all, fibrillin-1 gene mutations are expected to exert a dominant negative effect, whereby mutant fibrillin monomers impair the global function of the microfibrils. In this paper we review the molecular physiology and pathophysiology of Marfan syndrome and related microfibrillopathies. Keywords: Marfan syndrome; fibrillin; microfibrillopathies
Full Text
The Full Text of this article is available as a PDF (250.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams W. R., Ma R. I., Kucich U., Bashir M. M., Decker S., Tsipouras P., McPherson J. D., Wasmuth J. J., Rosenbloom J. Molecular cloning of the microfibrillar protein MFAP3 and assignment of the gene to human chromosome 5q32-q33.2. Genomics. 1995 Mar 1;26(1):47–54. doi: 10.1016/0888-7543(95)80081-v. [DOI] [PubMed] [Google Scholar]
- Adam S., Göhring W., Wiedemann H., Chu M. L., Timpl R., Kostka G. Binding of fibulin-1 to nidogen depends on its C-terminal globular domain and a specific array of calcium-binding epidermal growth factor-like (EG) modules. J Mol Biol. 1997 Sep 19;272(2):226–236. doi: 10.1006/jmbi.1997.1244. [DOI] [PubMed] [Google Scholar]
- Aoyama T., Francke U., Dietz H. C., Furthmayr H. Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibroblasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms. J Clin Invest. 1994 Jul;94(1):130–137. doi: 10.1172/JCI117298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aoyama T., Francke U., Gasner C., Furthmayr H. Fibrillin abnormalities and prognosis in Marfan syndrome and related disorders. Am J Med Genet. 1995 Aug 28;58(2):169–176. doi: 10.1002/ajmg.1320580216. [DOI] [PubMed] [Google Scholar]
- Aoyama T., Tynan K., Dietz H. C., Francke U., Furthmayr H. Missense mutations impair intracellular processing of fibrillin and microfibril assembly in Marfan syndrome. Hum Mol Genet. 1993 Dec;2(12):2135–2140. doi: 10.1093/hmg/2.12.2135. [DOI] [PubMed] [Google Scholar]
- Arn P. H., Scherer L. R., Haller J. A., Jr, Pyeritz R. E. Outcome of pectus excavatum in patients with Marfan syndrome and in the general population. J Pediatr. 1989 Dec;115(6):954–958. doi: 10.1016/s0022-3476(89)80749-8. [DOI] [PubMed] [Google Scholar]
- Ashworth J. L., Murphy G., Rock M. J., Sherratt M. J., Shapiro S. D., Shuttleworth C. A., Kielty C. M. Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J. 1999 May 15;340(Pt 1):171–181. [PMC free article] [PubMed] [Google Scholar]
- Babcock D., Gasner C., Francke U., Maslen C. A single mutation that results in an Asp to His substitution and partial exon skipping in a family with congenital contractural arachnodactyly. Hum Genet. 1998 Jul;103(1):22–28. doi: 10.1007/s004390050777. [DOI] [PubMed] [Google Scholar]
- Balbona K., Tran H., Godyna S., Ingham K. C., Strickland D. K., Argraves W. S. Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J Biol Chem. 1992 Oct 5;267(28):20120–20125. [PubMed] [Google Scholar]
- Besser T. E., Potter K. A., Bryan G. M., Knowlen G. G. An animal model of the Marfan syndrome. Am J Med Genet. 1990 Sep;37(1):159–165. doi: 10.1002/ajmg.1320370137. [DOI] [PubMed] [Google Scholar]
- Biery N. J., Eldadah Z. A., Moore C. S., Stetten G., Spencer F., Dietz H. C. Revised genomic organization of FBN1 and significance for regulated gene expression. Genomics. 1999 Feb 15;56(1):70–77. doi: 10.1006/geno.1998.5697. [DOI] [PubMed] [Google Scholar]
- Black C., Withers A. P., Gray J. R., Bridges A. B., Craig A., Baty D. U., Boxer M. Correlation of a recurrent FBN1 mutation (R122C) with an atypical familial Marfan syndrome phenotype. Hum Mutat. 1998;Suppl 1:S198–S200. doi: 10.1002/humu.1380110164. [DOI] [PubMed] [Google Scholar]
- Boileau C., Jondeau G., Babron M. C., Coulon M., Alexandre J. A., Sakai L., Melki J., Delorme G., Dubourg O., Bonaïti-Pellié C. Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomalies not linked to the fibrillin genes. Am J Hum Genet. 1993 Jul;53(1):46–54. [PMC free article] [PubMed] [Google Scholar]
- Booms P., Cisler J., Mathews K. R., Godfrey M., Tiecke F., Kaufmann U. C., Vetter U., Hagemeier C., Robinson P. N. Novel exon skipping mutation in the fibrillin-1 gene: two 'hot spots' for the neonatal Marfan syndrome. Clin Genet. 1999 Feb;55(2):110–117. doi: 10.1034/j.1399-0004.1999.550207.x. [DOI] [PubMed] [Google Scholar]
- Booms P., Withers A. P., Boxer M., Kaufmann U. C., Hagemeier C., Vetter U., Robinson P. N. A novel de novo mutation in exon 14 of the fibrillin-1 gene associated with delayed secretion of fibrillin in a patient with a mild Marfan phenotype. Hum Genet. 1997 Aug;100(2):195–200. doi: 10.1007/s004390050489. [DOI] [PubMed] [Google Scholar]
- Bowness J. M., Tarr A. H. epsilon(gamma-Glutamyl)lysine crosslinks are concentrated in a non-collagenous microfibrillar fraction of cartilage. Biochem Cell Biol. 1997;75(1):89–91. doi: 10.1139/o96-060. [DOI] [PubMed] [Google Scholar]
- Bressan G. M., Daga-Gordini D., Colombatti A., Castellani I., Marigo V., Volpin D. Emilin, a component of elastic fibers preferentially located at the elastin-microfibrils interface. J Cell Biol. 1993 Apr;121(1):201–212. doi: 10.1083/jcb.121.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown-Augsburger P., Broekelmann T., Mecham L., Mercer R., Gibson M. A., Cleary E. G., Abrams W. R., Rosenbloom J., Mecham R. P. Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. J Biol Chem. 1994 Nov 11;269(45):28443–28449. [PubMed] [Google Scholar]
- Brown-Augsburger P., Broekelmann T., Rosenbloom J., Mecham R. P. Functional domains on elastin and microfibril-associated glycoprotein involved in elastic fibre assembly. Biochem J. 1996 Aug 15;318(Pt 1):149–155. doi: 10.1042/bj3180149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cardy C. M., Handford P. A. Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains. J Mol Biol. 1998 Mar 13;276(5):855–860. doi: 10.1006/jmbi.1997.1593. [DOI] [PubMed] [Google Scholar]
- Collod-Béroud G., Béroud C., Ades L., Black C., Boxer M., Brock D. J., Holman K. J., de Paepe A., Francke U., Grau U. Marfan Database (third edition): new mutations and new routines for the software. Nucleic Acids Res. 1998 Jan 1;26(1):229–223. doi: 10.1093/nar/26.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collod G., Babron M. C., Jondeau G., Coulon M., Weissenbach J., Dubourg O., Bourdarias J. P., Bonaïti-Pellié C., Junien C., Boileau C. A second locus for Marfan syndrome maps to chromosome 3p24.2-p25. Nat Genet. 1994 Nov;8(3):264–268. doi: 10.1038/ng1194-264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colosetti P., Hellman U., Heldin C. H., Miyazono K. Ca2+ binding of latent transforming growth factor-beta 1 binding protein. FEBS Lett. 1993 Apr 5;320(2):140–144. doi: 10.1016/0014-5793(93)80079-a. [DOI] [PubMed] [Google Scholar]
- Corson G. M., Chalberg S. C., Dietz H. C., Charbonneau N. L., Sakai L. Y. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end. Genomics. 1993 Aug;17(2):476–484. doi: 10.1006/geno.1993.1350. [DOI] [PubMed] [Google Scholar]
- Cross H. E., Jensen A. D. Ocular manifestations in the Marfan syndrome and homocystinuria. Am J Ophthalmol. 1973 Mar;75(3):405–420. doi: 10.1016/0002-9394(73)91149-5. [DOI] [PubMed] [Google Scholar]
- D'Arrigo C., Burl S., Withers A. P., Dobson H., Black C., Boxer M. TGF-beta1 binding protein-like modules of fibrillin-1 and -2 mediate integrin-dependent cell adhesion. Connect Tissue Res. 1998;37(1-2):29–51. doi: 10.3109/03008209809028898. [DOI] [PubMed] [Google Scholar]
- Dallas S. L., Miyazono K., Skerry T. M., Mundy G. R., Bonewald L. F. Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol. 1995 Oct;131(2):539–549. doi: 10.1083/jcb.131.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Paepe A., Devereux R. B., Dietz H. C., Hennekam R. C., Pyeritz R. E. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet. 1996 Apr 24;62(4):417–426. doi: 10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Dietz H. C., Cutting G. R., Pyeritz R. E., Maslen C. L., Sakai L. Y., Corson G. M., Puffenberger E. G., Hamosh A., Nanthakumar E. J., Curristin S. M. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991 Jul 25;352(6333):337–339. doi: 10.1038/352337a0. [DOI] [PubMed] [Google Scholar]
- Dietz H. C., Kendzior R. J., Jr Maintenance of an open reading frame as an additional level of scrutiny during splice site selection. Nat Genet. 1994 Oct;8(2):183–188. doi: 10.1038/ng1094-183. [DOI] [PubMed] [Google Scholar]
- Dietz H. C., McIntosh I., Sakai L. Y., Corson G. M., Chalberg S. C., Pyeritz R. E., Francomano C. A. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics. 1993 Aug;17(2):468–475. doi: 10.1006/geno.1993.1349. [DOI] [PubMed] [Google Scholar]
- Dietz H. C., Pyeritz R. E. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 1995;4(Spec No):1799–1809. doi: 10.1093/hmg/4.suppl_1.1799. [DOI] [PubMed] [Google Scholar]
- Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
- Dietz H., Francke U., Furthmayr H., Francomano C., De Paepe A., Devereux R., Ramirez F., Pyeritz R. The question of heterogeneity in Marfan syndrome. Nat Genet. 1995 Mar;9(3):228–231. doi: 10.1038/ng0395-228. [DOI] [PubMed] [Google Scholar]
- Downing A. K., Knott V., Werner J. M., Cardy C. M., Campbell I. D., Handford P. A. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell. 1996 May 17;85(4):597–605. doi: 10.1016/s0092-8674(00)81259-3. [DOI] [PubMed] [Google Scholar]
- Edwards M. J., Challinor C. J., Colley P. W., Roberts J., Partington M. W., Hollway G. E., Kozman H. M., Mulley J. C. Clinical and linkage study of a large family with simple ectopia lentis linked to FBN1. Am J Med Genet. 1994 Oct 15;53(1):65–71. doi: 10.1002/ajmg.1320530114. [DOI] [PubMed] [Google Scholar]
- Engel J. EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation? FEBS Lett. 1989 Jul 17;251(1-2):1–7. doi: 10.1016/0014-5793(89)81417-6. [DOI] [PubMed] [Google Scholar]
- Faraco J., Bashir M., Rosenbloom J., Francke U. Characterization of the human gene for microfibril-associated glycoprotein (MFAP2), assignment to chromosome 1p36.1-p35, and linkage to D1S170. Genomics. 1995 Feb 10;25(3):630–637. doi: 10.1016/0888-7543(95)80004-6. [DOI] [PubMed] [Google Scholar]
- Finnis M. L., Gibson M. A. Microfibril-associated glycoprotein-1 (MAGP-1) binds to the pepsin-resistant domain of the alpha3(VI) chain of type VI collagen. J Biol Chem. 1997 Sep 5;272(36):22817–22823. doi: 10.1074/jbc.272.36.22817. [DOI] [PubMed] [Google Scholar]
- Flaumenhaft R., Abe M., Sato Y., Miyazono K., Harpel J., Heldin C. H., Rifkin D. B. Role of the latent TGF-beta binding protein in the activation of latent TGF-beta by co-cultures of endothelial and smooth muscle cells. J Cell Biol. 1993 Feb;120(4):995–1002. doi: 10.1083/jcb.120.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischer K. J., Nousari H. C., Anhalt G. J., Stone C. D., Laschinger J. C. Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan's syndrome. Ann Thorac Surg. 1997 Apr;63(4):1012–1017. doi: 10.1016/s0003-4975(97)00061-1. [DOI] [PubMed] [Google Scholar]
- Francke U., Berg M. A., Tynan K., Brenn T., Liu W., Aoyama T., Gasner C., Miller D. C., Furthmayr H. A Gly1127Ser mutation in an EGF-like domain of the fibrillin-1 gene is a risk factor for ascending aortic aneurysm and dissection. Am J Hum Genet. 1995 Jun;56(6):1287–1296. [PMC free article] [PubMed] [Google Scholar]
- Gibson M. A., Finnis M. L., Kumaratilake J. S., Cleary E. G. Microfibril-associated glycoprotein-2 (MAGP-2) is specifically associated with fibrillin-containing microfibrils but exhibits more restricted patterns of tissue localization and developmental expression than its structural relative MAGP-1. J Histochem Cytochem. 1998 Aug;46(8):871–886. doi: 10.1177/002215549804600802. [DOI] [PubMed] [Google Scholar]
- Gibson M. A., Hatzinikolas G., Davis E. C., Baker E., Sutherland G. R., Mecham R. P. Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils. Mol Cell Biol. 1995 Dec;15(12):6932–6942. doi: 10.1128/mcb.15.12.6932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson M. A., Hatzinikolas G., Kumaratilake J. S., Sandberg L. B., Nicholl J. K., Sutherland G. R., Cleary E. G. Further characterization of proteins associated with elastic fiber microfibrils including the molecular cloning of MAGP-2 (MP25) J Biol Chem. 1996 Jan 12;271(2):1096–1103. doi: 10.1074/jbc.271.2.1096. [DOI] [PubMed] [Google Scholar]
- Gibson M. A., Hughes J. L., Fanning J. C., Cleary E. G. The major antigen of elastin-associated microfibrils is a 31-kDa glycoprotein. J Biol Chem. 1986 Aug 25;261(24):11429–11436. [PubMed] [Google Scholar]
- Gibson M. A., Kumaratilake J. S., Cleary E. G. The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem. 1989 Mar 15;264(8):4590–4598. [PubMed] [Google Scholar]
- Gibson M. A., Leavesley D. I., Ashman L. K. Microfibril-associated glycoprotein-2 specifically interacts with a range of bovine and human cell types via alphaVbeta3 integrin. J Biol Chem. 1999 May 7;274(19):13060–13065. doi: 10.1074/jbc.274.19.13060. [DOI] [PubMed] [Google Scholar]
- Gibson M. A., Sandberg L. B., Grosso L. E., Cleary E. G. Complementary DNA cloning establishes microfibril-associated glycoprotein (MAGP) to be a discrete component of the elastin-associated microfibrils. J Biol Chem. 1991 Apr 25;266(12):7596–7601. [PubMed] [Google Scholar]
- Giltay R., Kostka G., Timpl R. Sequence and expression of a novel member (LTBP-4) of the family of latent transforming growth factor-beta binding proteins. FEBS Lett. 1997 Jul 14;411(2-3):164–168. doi: 10.1016/s0014-5793(97)00685-6. [DOI] [PubMed] [Google Scholar]
- Glanville R. W., Qian R. Q., McClure D. W., Maslen C. L. Calcium binding, hydroxylation, and glycosylation of the precursor epidermal growth factor-like domains of fibrillin-1, the Marfan gene protein. J Biol Chem. 1994 Oct 28;269(43):26630–26634. [PubMed] [Google Scholar]
- Gleizes P. E., Beavis R. C., Mazzieri R., Shen B., Rifkin D. B. Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1. J Biol Chem. 1996 Nov 22;271(47):29891–29896. doi: 10.1074/jbc.271.47.29891. [DOI] [PubMed] [Google Scholar]
- Godfrey M., Menashe V., Weleber R. G., Koler R. D., Bigley R. H., Lovrien E., Zonana J., Hollister D. W. Cosegregation of elastin-associated microfibrillar abnormalities with the Marfan phenotype in families. Am J Hum Genet. 1990 Apr;46(4):652–660. [PMC free article] [PubMed] [Google Scholar]
- Godfrey M., Raghunath M., Cisler J., Bevins C. L., DePaepe A., Di Rocco M., Gregoritch J., Imaizumi K., Kaplan P., Kuroki Y. Abnormal morphology of fibrillin microfibrils in fibroblast cultures from patients with neonatal Marfan syndrome. Am J Pathol. 1995 Jun;146(6):1414–1421. [PMC free article] [PubMed] [Google Scholar]
- Gott V. L., Laschinger J. C., Cameron D. E., Dietz H. C., Greene P. S., Gillinov A. M., Pyeritz R. E., Alejo D. E., Fleischer K. J., Anhalt G. J. The Marfan syndrome and the cardiovascular surgeon. Eur J Cardiothorac Surg. 1996;10(3):149–158. doi: 10.1016/s1010-7940(96)80289-2. [DOI] [PubMed] [Google Scholar]
- Gray J. R., Bridges A. B., Faed M. J., Pringle T., Baines P., Dean J., Boxer M. Ascertainment and severity of Marfan syndrome in a Scottish population. J Med Genet. 1994 Jan;31(1):51–54. doi: 10.1136/jmg.31.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray J. R., Davies S. J. Marfan syndrome. J Med Genet. 1996 May;33(5):403–408. doi: 10.1136/jmg.33.5.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greally M. T., Carey J. C., Milewicz D. M., Hudgins L., Goldberg R. B., Shprintzen R. J., Cousineau A. J., Smith W. L., Jr, Judisch G. F., Hanson J. W. Shprintzen-Goldberg syndrome: a clinical analysis. Am J Med Genet. 1998 Mar 19;76(3):202–212. [PubMed] [Google Scholar]
- Handford P. A., Mayhew M., Baron M., Winship P. R., Campbell I. D., Brownlee G. G. Key residues involved in calcium-binding motifs in EGF-like domains. Nature. 1991 May 9;351(6322):164–167. doi: 10.1038/351164a0. [DOI] [PubMed] [Google Scholar]
- Handford P., Downing A. K., Rao Z., Hewett D. R., Sykes B. C., Kielty C. M. The calcium binding properties and molecular organization of epidermal growth factor-like domains in human fibrillin-1. J Biol Chem. 1995 Mar 24;270(12):6751–6756. doi: 10.1074/jbc.270.12.6751. [DOI] [PubMed] [Google Scholar]
- Hatzinikolas G., Gibson M. A. The exon structure of the human MAGP-2 gene. Similarity with the MAGP-1 gene is confined to two exons encoding a cysteine-rich region. J Biol Chem. 1998 Nov 6;273(45):29309–29314. doi: 10.1074/jbc.273.45.29309. [DOI] [PubMed] [Google Scholar]
- Haynes S. L., Shuttleworth C. A., Kielty C. M. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization. Br J Dermatol. 1997 Jul;137(1):17–23. [PubMed] [Google Scholar]
- Hayward C., Brock D. J. Fibrillin-1 mutations in Marfan syndrome and other type-1 fibrillinopathies. Hum Mutat. 1997;10(6):415–423. doi: 10.1002/(SICI)1098-1004(1997)10:6<415::AID-HUMU1>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Hayward C., Porteous M. E., Brock D. J. A novel mutation in the fibrillin gene (FBN1) in familial arachnodactyly. Mol Cell Probes. 1994 Aug;8(4):325–327. doi: 10.1006/mcpr.1994.1045. [DOI] [PubMed] [Google Scholar]
- Hayward C., Porteous M. E., Brock D. J. Mutation screening of all 65 exons of the fibrillin-1 gene in 60 patients with Marfan syndrome: report of 12 novel mutations. Hum Mutat. 1997;10(4):280–289. doi: 10.1002/(SICI)1098-1004(1997)10:4<280::AID-HUMU3>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Henderson M., Polewski R., Fanning J. C., Gibson M. A. Microfibril-associated glycoprotein-1 (MAGP-1) is specifically located on the beads of the beaded-filament structure for fibrillin-containing microfibrils as visualized by the rotary shadowing technique. J Histochem Cytochem. 1996 Dec;44(12):1389–1397. doi: 10.1177/44.12.8985131. [DOI] [PubMed] [Google Scholar]
- Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
- Hirose H., Ozsvath K. J., Xia S., Tilson M. D. Molecular cloning of the complementary DNA for an additional member of the family of aortic aneurysm antigenic proteins. J Vasc Surg. 1997 Aug;26(2):313–318. doi: 10.1016/s0741-5214(97)70194-0. [DOI] [PubMed] [Google Scholar]
- Hollister D. W., Godfrey M., Sakai L. Y., Pyeritz R. E. Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. N Engl J Med. 1990 Jul 19;323(3):152–159. doi: 10.1056/NEJM199007193230303. [DOI] [PubMed] [Google Scholar]
- Hori Y., Katoh T., Hirakata M., Joki N., Kaname S., Fukagawa M., Okuda T., Ohashi H., Fujita T., Miyazono K. Anti-latent TGF-beta binding protein-1 antibody or synthetic oligopeptides inhibit extracellular matrix expression induced by stretch in cultured rat mesangial cells. Kidney Int. 1998 Jun;53(6):1616–1625. doi: 10.1046/j.1523-1755.1998.00908.x. [DOI] [PubMed] [Google Scholar]
- Horrigan S. K., Rich C. B., Streeten B. W., Li Z. Y., Foster J. A. Characterization of an associated microfibril protein through recombinant DNA techniques. J Biol Chem. 1992 May 15;267(14):10087–10095. [PubMed] [Google Scholar]
- Hurle J. M., Kitten G. T., Sakai L. Y., Volpin D., Solursh M. Elastic extracellular matrix of the embryonic chick heart: an immunohistological study using laser confocal microscopy. Dev Dyn. 1994 Aug;200(4):321–332. doi: 10.1002/aja.1002000407. [DOI] [PubMed] [Google Scholar]
- Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
- Hyytiäinen M., Taipale J., Heldin C. H., Keski-Oja J. Recombinant latent transforming growth factor beta-binding protein 2 assembles to fibroblast extracellular matrix and is susceptible to proteolytic processing and release. J Biol Chem. 1998 Aug 7;273(32):20669–20676. doi: 10.1074/jbc.273.32.20669. [DOI] [PubMed] [Google Scholar]
- Kainulainen K., Karttunen L., Puhakka L., Sakai L., Peltonen L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat Genet. 1994 Jan;6(1):64–69. doi: 10.1038/ng0194-64. [DOI] [PubMed] [Google Scholar]
- Kainulainen K., Pulkkinen L., Savolainen A., Kaitila I., Peltonen L. Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med. 1990 Oct 4;323(14):935–939. doi: 10.1056/NEJM199010043231402. [DOI] [PubMed] [Google Scholar]
- Kainulainen K., Steinmann B., Collins F., Dietz H. C., Francomano C. A., Child A., Kilpatrick M. W., Brock D. J., Keston M., Pyeritz R. E. Marfan syndrome: no evidence for heterogeneity in different populations, and more precise mapping of the gene. Am J Hum Genet. 1991 Sep;49(3):662–667. [PMC free article] [PubMed] [Google Scholar]
- Kanzaki T., Olofsson A., Morén A., Wernstedt C., Hellman U., Miyazono K., Claesson-Welsh L., Heldin C. H. TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell. 1990 Jun 15;61(6):1051–1061. doi: 10.1016/0092-8674(90)90069-q. [DOI] [PubMed] [Google Scholar]
- Karonen T., Jeskanen L., Keski-Oja J. Transforming growth factor beta 1 and its latent form binding protein-1 associate with elastic fibres in human dermis: accumulation in actinic damage and absence in anetoderma. Br J Dermatol. 1997 Jul;137(1):51–58. [PubMed] [Google Scholar]
- Karttunen L., Raghunath M., Lönnqvist L., Peltonen L. A compound-heterozygous Marfan patient: two defective fibrillin alleles result in a lethal phenotype. Am J Hum Genet. 1994 Dec;55(6):1083–1091. [PMC free article] [PubMed] [Google Scholar]
- Keene D. R., Maddox B. K., Kuo H. J., Sakai L. Y., Glanville R. W. Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem. 1991 Apr;39(4):441–449. doi: 10.1177/39.4.2005373. [DOI] [PubMed] [Google Scholar]
- Kettle S., Yuan X., Grundy G., Knott V., Downing A. K., Handford P. A. Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function. J Mol Biol. 1999 Jan 22;285(3):1277–1287. doi: 10.1006/jmbi.1998.2368. [DOI] [PubMed] [Google Scholar]
- Kielty C. M., Davies S. J., Phillips J. E., Jones C. J., Shuttleworth C. A., Charles S. J. Marfan syndrome: fibrillin expression and microfibrillar abnormalities in a family with predominant ocular defects. J Med Genet. 1995 Jan;32(1):1–6. doi: 10.1136/jmg.32.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kielty C. M., Phillips J. E., Child A. H., Pope F. M., Shuttleworth C. A. Fibrillin secretion and microfibril assembly by Marfan dermal fibroblasts. Matrix Biol. 1994 Mar;14(2):191–199. doi: 10.1016/0945-053x(94)90008-6. [DOI] [PubMed] [Google Scholar]
- Kielty C. M., Raghunath M., Siracusa L. D., Sherratt M. J., Peters R., Shuttleworth C. A., Jimenez S. A. The Tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol. 1998 Mar 9;140(5):1159–1166. doi: 10.1083/jcb.140.5.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kielty C. M., Shuttleworth C. A. Abnormal fibrillin assembly by dermal fibroblasts from two patients with Marfan syndrome. J Cell Biol. 1994 Mar;124(6):997–1004. doi: 10.1083/jcb.124.6.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kielty C. M., Shuttleworth C. A. Synthesis and assembly of fibrillin by fibroblasts and smooth muscle cells. J Cell Sci. 1993 Sep;106(Pt 1):167–173. doi: 10.1242/jcs.106.1.167. [DOI] [PubMed] [Google Scholar]
- Kielty C. M., Shuttleworth C. A. The role of calcium in the organization of fibrillin microfibrils. FEBS Lett. 1993 Dec 27;336(2):323–326. doi: 10.1016/0014-5793(93)80829-j. [DOI] [PubMed] [Google Scholar]
- Kielty C. M., Whittaker S. P., Shuttleworth C. A. Fibrillin: evidence that chondroitin sulphate proteoglycans are components of microfibrils and associate with newly synthesised monomers. FEBS Lett. 1996 May 20;386(2-3):169–173. doi: 10.1016/0014-5793(96)00423-1. [DOI] [PubMed] [Google Scholar]
- Kielty C. M., Woolley D. E., Whittaker S. P., Shuttleworth C. A. Catabolism of intact fibrillin microfibrils by neutrophil elastase, chymotrypsin and trypsin. FEBS Lett. 1994 Aug 29;351(1):85–89. doi: 10.1016/0014-5793(94)00818-3. [DOI] [PubMed] [Google Scholar]
- Kilpatrick M. W., Phylactou L. A., Godfrey M., Wu C. H., Wu G. Y., Tsipouras P. Delivery of a hammerhead ribozyme specifically down-regulates the production of fibrillin-1 by cultured dermal fibroblasts. Hum Mol Genet. 1996 Dec;5(12):1939–1944. doi: 10.1093/hmg/5.12.1939. [DOI] [PubMed] [Google Scholar]
- Knott V., Downing A. K., Cardy C. M., Handford P. Calcium binding properties of an epidermal growth factor-like domain pair from human fibrillin-1. J Mol Biol. 1996 Jan 12;255(1):22–27. doi: 10.1006/jmbi.1996.0003. [DOI] [PubMed] [Google Scholar]
- Kobayashi R., Tashima Y., Masuda H., Shozawa T., Numata Y., Miyauchi K., Hayakawa T. Isolation and characterization of a new 36-kDa microfibril-associated glycoprotein from porcine aorta. J Biol Chem. 1989 Oct 15;264(29):17437–17444. [PubMed] [Google Scholar]
- Lee B., Godfrey M., Vitale E., Hori H., Mattei M. G., Sarfarazi M., Tsipouras P., Ramirez F., Hollister D. W. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature. 1991 Jul 25;352(6333):330–334. doi: 10.1038/352330a0. [DOI] [PubMed] [Google Scholar]
- Lillie M. A., David G. J., Gosline J. M. Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. Connect Tissue Res. 1998;37(1-2):121–141. doi: 10.3109/03008209809028905. [DOI] [PubMed] [Google Scholar]
- Lipscomb K. J., Clayton-Smith J., Harris R. Evolving phenotype of Marfan's syndrome. Arch Dis Child. 1997 Jan;76(1):41–46. doi: 10.1136/adc.76.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu W., Faraco J., Qian C., Francke U. The gene for microfibril-associated protein-1 (MFAP1) is located several megabases centromeric to FBN1 and is not mutated in Marfan syndrome. Hum Genet. 1997 May;99(5):578–584. doi: 10.1007/s004390050409. [DOI] [PubMed] [Google Scholar]
- Liu W., Qian C., Comeau K., Brenn T., Furthmayr H., Francke U. Mutant fibrillin-1 monomers lacking EGF-like domains disrupt microfibril assembly and cause severe marfan syndrome. Hum Mol Genet. 1996 Oct;5(10):1581–1587. doi: 10.1093/hmg/5.10.1581. [DOI] [PubMed] [Google Scholar]
- Liu W., Qian C., Francke U. Silent mutation induces exon skipping of fibrillin-1 gene in Marfan syndrome. Nat Genet. 1997 Aug;16(4):328–329. doi: 10.1038/ng0897-328. [DOI] [PubMed] [Google Scholar]
- Lönnqvist L., Child A., Kainulainen K., Davidson R., Puhakka L., Peltonen L. A novel mutation of the fibrillin gene causing ectopia lentis. Genomics. 1994 Feb;19(3):573–576. doi: 10.1006/geno.1994.1110. [DOI] [PubMed] [Google Scholar]
- Lönnqvist L., Reinhardt D., Sakai L., Peltonen L. Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet. 1998 Dec;7(13):2039–2044. doi: 10.1093/hmg/7.13.2039. [DOI] [PubMed] [Google Scholar]
- Maddox B. K., Sakai L. Y., Keene D. R., Glanville R. W. Connective tissue microfibrils. Isolation and characterization of three large pepsin-resistant domains of fibrillin. J Biol Chem. 1989 Dec 15;264(35):21381–21385. [PubMed] [Google Scholar]
- Maquat L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995 Jul;1(5):453–465. [PMC free article] [PubMed] [Google Scholar]
- Maslen C., Babcock D., Raghunath M., Steinmann B. A rare branch-point mutation is associated with missplicing of fibrillin-2 in a large family with congenital contractural arachnodactyly. Am J Hum Genet. 1997 Jun;60(6):1389–1398. doi: 10.1086/515472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayhew M., Handford P., Baron M., Tse A. G., Campbell I. D., Brownlee G. G. Ligand requirements for Ca2+ binding to EGF-like domains. Protein Eng. 1992 Sep;5(6):489–494. doi: 10.1093/protein/5.6.489. [DOI] [PubMed] [Google Scholar]
- Milewicz D. M., Chen H., Park E. S., Petty E. M., Zaghi H., Shashidhar G., Willing M., Patel V. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol. 1998 Aug 15;82(4):474–479. doi: 10.1016/s0002-9149(98)00364-6. [DOI] [PubMed] [Google Scholar]
- Milewicz D. M., Grossfield J., Cao S. N., Kielty C., Covitz W., Jewett T. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest. 1995 May;95(5):2373–2378. doi: 10.1172/JCI117930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milewicz D. M., Michael K., Fisher N., Coselli J. S., Markello T., Biddinger A. Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms. Circulation. 1996 Dec 1;94(11):2708–2711. doi: 10.1161/01.cir.94.11.2708. [DOI] [PubMed] [Google Scholar]
- Milewicz D. M., Pyeritz R. E., Crawford E. S., Byers P. H. Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts. J Clin Invest. 1992 Jan;89(1):79–86. doi: 10.1172/JCI115589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazono K., Olofsson A., Colosetti P., Heldin C. H. A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1. EMBO J. 1991 May;10(5):1091–1101. doi: 10.1002/j.1460-2075.1991.tb08049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montgomery R. A., Dietz H. C. Inhibition of fibrillin 1 expression using U1 snRNA as a vehicle for the presentation of antisense targeting sequence. Hum Mol Genet. 1997 Apr;6(4):519–525. doi: 10.1093/hmg/6.4.519. [DOI] [PubMed] [Google Scholar]
- Montgomery R. A., Geraghty M. T., Bull E., Gelb B. D., Johnson M., McIntosh I., Francomano C. A., Dietz H. C. Multiple molecular mechanisms underlying subdiagnostic variants of Marfan syndrome. Am J Hum Genet. 1998 Dec;63(6):1703–1711. doi: 10.1086/302144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morén A., Olofsson A., Stenman G., Sahlin P., Kanzaki T., Claesson-Welsh L., ten Dijke P., Miyazono K., Heldin C. H. Identification and characterization of LTBP-2, a novel latent transforming growth factor-beta-binding protein. J Biol Chem. 1994 Dec 23;269(51):32469–32478. [PubMed] [Google Scholar]
- Nakajima Y., Miyazono K., Kato M., Takase M., Yamagishi T., Nakamura H. Extracellular fibrillar structure of latent TGF beta binding protein-1: role in TGF beta-dependent endothelial-mesenchymal transformation during endocardial cushion tissue formation in mouse embryonic heart. J Cell Biol. 1997 Jan 13;136(1):193–204. doi: 10.1083/jcb.136.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nijbroek G., Sood S., McIntosh I., Francomano C. A., Bull E., Pereira L., Ramirez F., Pyeritz R. E., Dietz H. C. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am J Hum Genet. 1995 Jul;57(1):8–21. [PMC free article] [PubMed] [Google Scholar]
- Ohlin A. K., Stenflo J. Calcium-dependent interaction between the epidermal growth factor precursor-like region of human protein C and a monoclonal antibody. J Biol Chem. 1987 Oct 5;262(28):13798–13804. [PubMed] [Google Scholar]
- Olofsson A., Ichijo H., Morén A., ten Dijke P., Miyazono K., Heldin C. H. Efficient association of an amino-terminally extended form of human latent transforming growth factor-beta binding protein with the extracellular matrix. J Biol Chem. 1995 Dec 29;270(52):31294–31297. doi: 10.1074/jbc.270.52.31294. [DOI] [PubMed] [Google Scholar]
- Pan T. C., Kluge M., Zhang R. Z., Mayer U., Timpl R., Chu M. L. Sequence of extracellular mouse protein BM-90/fibulin and its calcium-dependent binding to other basement-membrane ligands. Eur J Biochem. 1993 Aug 1;215(3):733–740. doi: 10.1111/j.1432-1033.1993.tb18086.x. [DOI] [PubMed] [Google Scholar]
- Park E. S., Putnam E. A., Chitayat D., Child A., Milewicz D. M. Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development. Am J Med Genet. 1998 Jul 24;78(4):350–355. [PubMed] [Google Scholar]
- Pereira L., Andrikopoulos K., Tian J., Lee S. Y., Keene D. R., Ono R., Reinhardt D. P., Sakai L. Y., Biery N. J., Bunton T. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet. 1997 Oct;17(2):218–222. doi: 10.1038/ng1097-218. [DOI] [PubMed] [Google Scholar]
- Pereira L., D'Alessio M., Ramirez F., Lynch J. R., Sykes B., Pangilinan T., Bonadio J. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 1993 Oct;2(10):1762–1762. doi: 10.1093/hmg/2.10.1762. [DOI] [PubMed] [Google Scholar]
- Pfaff M., Reinhardt D. P., Sakai L. Y., Timpl R. Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett. 1996 Apr 22;384(3):247–250. doi: 10.1016/0014-5793(96)00325-0. [DOI] [PubMed] [Google Scholar]
- Phylactou L. A., Tsipouras P., Kilpatrick M. W. Hammerhead ribozymes targeted to the FBN1 mRNA can discriminate a single base mismatch between ribozyme and target. Biochem Biophys Res Commun. 1998 Aug 28;249(3):804–810. doi: 10.1006/bbrc.1998.9241. [DOI] [PubMed] [Google Scholar]
- Potter K. A., Besser T. E. Cardiovascular lesions in bovine Marfan syndrome. Vet Pathol. 1994 Sep;31(5):501–509. doi: 10.1177/030098589403100501. [DOI] [PubMed] [Google Scholar]
- Potter K. A., Hoffman Y., Sakai L. Y., Byers P. H., Besser T. E., Milewicz D. M. Abnormal fibrillin metabolism in bovine Marfan syndrome. Am J Pathol. 1993 Mar;142(3):803–810. [PMC free article] [PubMed] [Google Scholar]
- Putnam E. A., Park E. S., Aalfs C. M., Hennekam R. C., Milewicz D. M. Parental somatic and germ-line mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts. Am J Hum Genet. 1997 Apr;60(4):818–827. [PMC free article] [PubMed] [Google Scholar]
- Putnam E. A., Zhang H., Ramirez F., Milewicz D. M. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat Genet. 1995 Dec;11(4):456–458. doi: 10.1038/ng1295-456. [DOI] [PubMed] [Google Scholar]
- Qian R. Q., Glanville R. W. Alignment of fibrillin molecules in elastic microfibrils is defined by transglutaminase-derived cross-links. Biochemistry. 1997 Dec 16;36(50):15841–15847. doi: 10.1021/bi971036f. [DOI] [PubMed] [Google Scholar]
- Raghunath M., Bächi T., Meuli M., Altermatt S., Gobet R., Bruckner-Tuderman L., Steinmann B. Fibrillin and elastin expression in skin regenerating from cultured keratinocyte autografts: morphogenesis of microfibrils begins at the dermo-epidermal junction and precedes elastic fiber formation. J Invest Dermatol. 1996 May;106(5):1090–1095. doi: 10.1111/1523-1747.ep12339373. [DOI] [PubMed] [Google Scholar]
- Raghunath M., Kielty C. M., Kainulainen K., Child A., Peltonen L., Steinmann B. Analyses of truncated fibrillin caused by a 366 bp deletion in the FBN1 gene resulting in Marfan syndrome. Biochem J. 1994 Sep 15;302(Pt 3):889–896. doi: 10.1042/bj3020889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghunath M., Kielty C. M., Steinmann B. Truncated profibrillin of a Marfan patient is of apparent similar size as fibrillin: intracellular retention leads to over-N-glycosylation. J Mol Biol. 1995 May 19;248(5):901–909. doi: 10.1006/jmbi.1995.0270. [DOI] [PubMed] [Google Scholar]
- Raghunath M., Putnam E. A., Ritty T., Hamstra D., Park E. S., Tschödrich-Rotter M., Peters R., Rehemtulla A., Milewicz D. M. Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci. 1999 Apr;112(Pt 7):1093–1100. doi: 10.1242/jcs.112.7.1093. [DOI] [PubMed] [Google Scholar]
- Raghunath M., Superti-Furga A., Godfrey M., Steinmann B. Decreased extracellular deposition of fibrillin and decorin in neonatal Marfan syndrome fibroblasts. Hum Genet. 1993 Jan;90(5):511–515. doi: 10.1007/BF00217450. [DOI] [PubMed] [Google Scholar]
- Raghunath M., Tschödrich-Rotter M., Sasaki T., Meuli M., Chu M. L., Timpl R. Confocal laser scanning analysis of the association of fibulin-2 with fibrillin-1 and fibronectin define different stages of skin regeneration. J Invest Dermatol. 1999 Jan;112(1):97–101. doi: 10.1046/j.1523-1747.1999.00483.x. [DOI] [PubMed] [Google Scholar]
- Ramirez F. Fibrillln mutations in Marfan syndrome and related phenotypes. Curr Opin Genet Dev. 1996 Jun;6(3):309–315. doi: 10.1016/s0959-437x(96)80007-4. [DOI] [PubMed] [Google Scholar]
- Rand M. D., Lindblom A., Carlson J., Villoutreix B. O., Stenflo J. Calcium binding to tandem repeats of EGF-like modules. Expression and characterization of the EGF-like modules of human Notch-1 implicated in receptor-ligand interactions. Protein Sci. 1997 Oct;6(10):2059–2071. doi: 10.1002/pro.5560061002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao Z., Handford P., Mayhew M., Knott V., Brownlee G. G., Stuart D. The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell. 1995 Jul 14;82(1):131–141. doi: 10.1016/0092-8674(95)90059-4. [DOI] [PubMed] [Google Scholar]
- Rebay I., Fleming R. J., Fehon R. G., Cherbas L., Cherbas P., Artavanis-Tsakonas S. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell. 1991 Nov 15;67(4):687–699. doi: 10.1016/0092-8674(91)90064-6. [DOI] [PubMed] [Google Scholar]
- Reinhardt D. P., Keene D. R., Corson G. M., Pöschl E., Bächinger H. P., Gambee J. E., Sakai L. Y. Fibrillin-1: organization in microfibrils and structural properties. J Mol Biol. 1996 Apr 26;258(1):104–116. doi: 10.1006/jmbi.1996.0237. [DOI] [PubMed] [Google Scholar]
- Reinhardt D. P., Mechling D. E., Boswell B. A., Keene D. R., Sakai L. Y., Bächinger H. P. Calcium determines the shape of fibrillin. J Biol Chem. 1997 Mar 14;272(11):7368–7373. doi: 10.1074/jbc.272.11.7368. [DOI] [PubMed] [Google Scholar]
- Reinhardt D. P., Sasaki T., Dzamba B. J., Keene D. R., Chu M. L., Göhring W., Timpl R., Sakai L. Y. Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 1996 Aug 9;271(32):19489–19496. doi: 10.1074/jbc.271.32.19489. [DOI] [PubMed] [Google Scholar]
- Ritty T. M., Broekelmann T., Tisdale C., Milewicz D. M., Mecham R. P. Processing of the fibrillin-1 carboxyl-terminal domain. J Biol Chem. 1999 Mar 26;274(13):8933–8940. doi: 10.1074/jbc.274.13.8933. [DOI] [PubMed] [Google Scholar]
- Roark E. F., Keene D. R., Haudenschild C. C., Godyna S., Little C. D., Argraves W. S. The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study. J Histochem Cytochem. 1995 Apr;43(4):401–411. doi: 10.1177/43.4.7534784. [DOI] [PubMed] [Google Scholar]
- Roman M. J., Rosen S. E., Kramer-Fox R., Devereux R. B. Prognostic significance of the pattern of aortic root dilation in the Marfan syndrome. J Am Coll Cardiol. 1993 Nov 1;22(5):1470–1476. doi: 10.1016/0735-1097(93)90559-j. [DOI] [PubMed] [Google Scholar]
- Rongish B. J., Drake C. J., Argraves W. S., Little C. D. Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Dev Dyn. 1998 Jul;212(3):461–471. doi: 10.1002/(SICI)1097-0177(199807)212:3<461::AID-AJA13>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Rosenbloom J., Abrams W. R., Mecham R. Extracellular matrix 4: the elastic fiber. FASEB J. 1993 Oct;7(13):1208–1218. [PubMed] [Google Scholar]
- Ross J. M., McIntire L. V., Moake J. L., Kuo H. J., Qian R. Q., Glanville R. W., Schwartz E., Rand J. H. Fibrillin containing elastic microfibrils support platelet adhesion under dynamic shear conditions. Thromb Haemost. 1998 Jan;79(1):155–161. [PubMed] [Google Scholar]
- Saharinen J., Taipale J., Keski-Oja J. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J. 1996 Jan 15;15(2):245–253. [PMC free article] [PubMed] [Google Scholar]
- Saharinen J., Taipale J., Monni O., Keski-Oja J. Identification and characterization of a new latent transforming growth factor-beta-binding protein, LTBP-4. J Biol Chem. 1998 Jul 17;273(29):18459–18469. doi: 10.1074/jbc.273.29.18459. [DOI] [PubMed] [Google Scholar]
- Sakai L. Y., Keene D. R., Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986 Dec;103(6 Pt 1):2499–2509. doi: 10.1083/jcb.103.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai L. Y., Keene D. R., Glanville R. W., Bächinger H. P. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem. 1991 Aug 5;266(22):14763–14770. [PubMed] [Google Scholar]
- Sakamoto H., Broekelmann T., Cheresh D. A., Ramirez F., Rosenbloom J., Mecham R. P. Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem. 1996 Mar 1;271(9):4916–4922. [PubMed] [Google Scholar]
- Salim M. A., Alpert B. S., Ward J. C., Pyeritz R. E. Effect of beta-adrenergic blockade on aortic root rate of dilation in the Marfan syndrome. Am J Cardiol. 1994 Sep 15;74(6):629–633. doi: 10.1016/0002-9149(94)90762-5. [DOI] [PubMed] [Google Scholar]
- Sasaki T., Göhring W., Pan T. C., Chu M. L., Timpl R. Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol. 1995 Dec 15;254(5):892–899. doi: 10.1006/jmbi.1995.0664. [DOI] [PubMed] [Google Scholar]
- Sasaki T., Mann K., Murphy G., Chu M. L., Timpl R. Different susceptibilities of fibulin-1 and fibulin-2 to cleavage by matrix metalloproteinases and other tissue proteases. Eur J Biochem. 1996 Sep 1;240(2):427–434. doi: 10.1111/j.1432-1033.1996.0427h.x. [DOI] [PubMed] [Google Scholar]
- Sasaki T., Mann K., Wiedemann H., Göhring W., Lustig A., Engel J., Chu M. L., Timpl R. Dimer model for the microfibrillar protein fibulin-2 and identification of the connecting disulfide bridge. EMBO J. 1997 Jun 2;16(11):3035–3043. doi: 10.1093/emboj/16.11.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrijver I., Liu W., Francke U. The pathogenicity of the Pro1148Ala substitution in the FBN1 gene: causing or predisposing to Marfan syndrome and aortic aneurysm, or clinically innocent? Hum Genet. 1997 May;99(5):607–611. doi: 10.1007/s004390050414. [DOI] [PubMed] [Google Scholar]
- Selander-Sunnerhagen M., Ullner M., Persson E., Teleman O., Stenflo J., Drakenberg T. How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem. 1992 Sep 25;267(27):19642–19649. doi: 10.2210/pdb1ccf/pdb. [DOI] [PubMed] [Google Scholar]
- Shores J., Berger K. R., Murphy E. A., Pyeritz R. E. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan's syndrome. N Engl J Med. 1994 May 12;330(19):1335–1341. doi: 10.1056/NEJM199405123301902. [DOI] [PubMed] [Google Scholar]
- Silverman D. I., Burton K. J., Gray J., Bosner M. S., Kouchoukos N. T., Roman M. J., Boxer M., Devereux R. B., Tsipouras P. Life expectancy in the Marfan syndrome. Am J Cardiol. 1995 Jan 15;75(2):157–160. doi: 10.1016/s0002-9149(00)80066-1. [DOI] [PubMed] [Google Scholar]
- Silverman D. I., Gray J., Roman M. J., Bridges A., Burton K., Boxer M., Devereux R. B., Tsipouras P. Family history of severe cardiovascular disease in Marfan syndrome is associated with increased aortic diameter and decreased survival. J Am Coll Cardiol. 1995 Oct;26(4):1062–1067. doi: 10.1016/0735-1097(95)00258-0. [DOI] [PubMed] [Google Scholar]
- Siracusa L. D., McGrath R., Ma Q., Moskow J. J., Manne J., Christner P. J., Buchberg A. M., Jimenez S. A. A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res. 1996 Apr;6(4):300–313. doi: 10.1101/gr.6.4.300. [DOI] [PubMed] [Google Scholar]
- Smallridge R. S., Whiteman P., Doering K., Handford P. A., Downing A. K. EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1. J Mol Biol. 1999 Feb 26;286(3):661–668. doi: 10.1006/jmbi.1998.2536. [DOI] [PubMed] [Google Scholar]
- Smith-Mungo L. I., Kagan H. M. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 1998 Feb;16(7):387–398. doi: 10.1016/s0945-053x(98)90012-9. [DOI] [PubMed] [Google Scholar]
- Sood S., Eldadah Z. A., Krause W. L., McIntosh I., Dietz H. C. Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Nat Genet. 1996 Feb;12(2):209–211. doi: 10.1038/ng0296-209. [DOI] [PubMed] [Google Scholar]
- Sponseller P. D., Hobbs W., Riley L. H., 3rd, Pyeritz R. E. The thoracolumbar spine in Marfan syndrome. J Bone Joint Surg Am. 1995 Jun;77(6):867–876. doi: 10.2106/00004623-199506000-00007. [DOI] [PubMed] [Google Scholar]
- Stenflo J., Lundwall A., Dahlbäck B. beta-Hydroxyasparagine in domains homologous to the epidermal growth factor precursor in vitamin K-dependent protein S. Proc Natl Acad Sci U S A. 1987 Jan;84(2):368–372. doi: 10.1073/pnas.84.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ståhl-Hallengren C., Ukkonen T., Kainulainen K., Kristofersson U., Saxne T., Tornqvist K., Peltonen L. An extra cysteine in one of the non-calcium-binding epidermal growth factor-like motifs of the FBN1 polypeptide is connected to a novel variant of Marfan syndrome. J Clin Invest. 1994 Aug;94(2):709–713. doi: 10.1172/JCI117389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Superti-Furga A., Raghunath M., Willems P. J. Deficiencies of fibrillin and decorin in fibroblast cultures of a patient with neonatal Marfan syndrome. J Med Genet. 1992 Dec;29(12):875–878. doi: 10.1136/jmg.29.12.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taipale J., Miyazono K., Heldin C. H., Keski-Oja J. Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol. 1994 Jan;124(1-2):171–181. doi: 10.1083/jcb.124.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taipale J., Saharinen J., Hedman K., Keski-Oja J. Latent transforming growth factor-beta 1 and its binding protein are components of extracellular matrix microfibrils. J Histochem Cytochem. 1996 Aug;44(8):875–889. doi: 10.1177/44.8.8756760. [DOI] [PubMed] [Google Scholar]
- Timpl R., Brown J. C. The laminins. Matrix Biol. 1994 Aug;14(4):275–281. doi: 10.1016/0945-053x(94)90192-9. [DOI] [PubMed] [Google Scholar]
- Tran H., Tanaka A., Litvinovich S. V., Medved L. V., Haudenschild C. C., Argraves W. S. The interaction of fibulin-1 with fibrinogen. A potential role in hemostasis and thrombosis. J Biol Chem. 1995 Aug 18;270(33):19458–19464. doi: 10.1074/jbc.270.33.19458. [DOI] [PubMed] [Google Scholar]
- Tran H., VanDusen W. J., Argraves W. S. The self-association and fibronectin-binding sites of fibulin-1 map to calcium-binding epidermal growth factor-like domains. J Biol Chem. 1997 Sep 5;272(36):22600–22606. doi: 10.1074/jbc.272.36.22600. [DOI] [PubMed] [Google Scholar]
- Trask T. M., Ritty T. M., Broekelmann T., Tisdale C., Mecham R. P. N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly. Biochem J. 1999 Jun 15;340(Pt 3):693–701. [PMC free article] [PubMed] [Google Scholar]
- Tsipouras P., Del Mastro R., Sarfarazi M., Lee B., Vitale E., Child A. H., Godfrey M., Devereux R. B., Hewett D., Steinmann B. Genetic linkage of the Marfan syndrome, ectopia lentis, and congenital contractural arachnodactyly to the fibrillin genes on chromosomes 15 and 5. The International Marfan Syndrome Collaborative Study. N Engl J Med. 1992 Apr 2;326(14):905–909. doi: 10.1056/NEJM199204023261401. [DOI] [PubMed] [Google Scholar]
- Tynan K., Comeau K., Pearson M., Wilgenbus P., Levitt D., Gasner C., Berg M. A., Miller D. C., Francke U. Mutation screening of complete fibrillin-1 coding sequence: report of five new mutations, including two in 8-cysteine domains. Hum Mol Genet. 1993 Nov;2(11):1813–1821. doi: 10.1093/hmg/2.11.1813. [DOI] [PubMed] [Google Scholar]
- Viljoen D. Congenital contractural arachnodactyly (Beals syndrome). J Med Genet. 1994 Aug;31(8):640–643. doi: 10.1136/jmg.31.8.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang M., Clericuzio C. L., Godfrey M. Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon 34 of fibrillin-2. Am J Hum Genet. 1996 Nov;59(5):1027–1034. [PMC free article] [PubMed] [Google Scholar]
- Watanabe Y., Yano S., Koga Y., Yukizane S., Nishiyori A., Yoshino M., Kato H., Ogata T., Adachi M. P1148A in fibrillin-1 is not a mutation leading to Shprintzen-Goldberg syndrome. Hum Mutat. 1997;10(4):326–327. doi: 10.1002/(SICI)1098-1004(1997)10:4<326::AID-HUMU10>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
- Wheatley H. M., Traboulsi E. I., Flowers B. E., Maumenee I. H., Azar D., Pyeritz R. E., Whittum-Hudson J. A. Immunohistochemical localization of fibrillin in human ocular tissues. Relevance to the Marfan syndrome. Arch Ophthalmol. 1995 Jan;113(1):103–109. doi: 10.1001/archopht.1995.01100010105028. [DOI] [PubMed] [Google Scholar]
- Whiteman P., Downing A. K., Smallridge R., Winship P. R., Handford P. A. A Gly --> Ser change causes defective folding in vitro of calcium-binding epidermal growth factor-like domains from factor IX and fibrillin-1. J Biol Chem. 1998 Apr 3;273(14):7807–7813. doi: 10.1074/jbc.273.14.7807. [DOI] [PubMed] [Google Scholar]
- Winship P. R., Dragon A. C. Identification of haemophilia B patients with mutations in the two calcium binding domains of factor IX: importance of a beta-OH Asp 64----Asn change. Br J Haematol. 1991 Jan;77(1):102–109. doi: 10.1111/j.1365-2141.1991.tb07955.x. [DOI] [PubMed] [Google Scholar]
- Wirtz M. K., Samples J. R., Kramer P. L., Rust K., Yount J., Acott T. S., Koler R. D., Cisler J., Jahed A., Gorlin R. J. Weill-Marchesani syndrome--possible linkage of the autosomal dominant form to 15q21.1. Am J Med Genet. 1996 Oct 2;65(1):68–75. doi: 10.1002/(SICI)1096-8628(19961002)65:1<68::AID-AJMG11>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Xia S., Ozsvath K., Hirose H., Tilson M. D. Partial amino acid sequence of a novel 40-kDa human aortic protein, with vitronectin-like, fibrinogen-like, and calcium binding domains: aortic aneurysm-associated protein-40 (AAAP-40) [human MAGP-3, proposed]. Biochem Biophys Res Commun. 1996 Feb 6;219(1):36–39. doi: 10.1006/bbrc.1996.0177. [DOI] [PubMed] [Google Scholar]
- Yeh H., Chow M., Abrams W. R., Fan J., Foster J., Mitchell H., Muenke M., Rosenbloom J. Structure of the human gene encoding the associated microfibrillar protein (MFAP1) and localization to chromosome 15q15-q21. Genomics. 1994 Sep 15;23(2):443–449. doi: 10.1006/geno.1994.1521. [DOI] [PubMed] [Google Scholar]
- Yin W., Fang J., Smiley E., Bonadio J. 8-Cysteine TGF-BP structural motifs are the site of covalent binding between mouse LTBP-3, LTBP-2, and latent TGF-beta 1. Biochim Biophys Acta. 1998 Apr 2;1383(2):340–350. doi: 10.1016/s0167-4838(98)00003-x. [DOI] [PubMed] [Google Scholar]
- Yin W., Smiley E., Germiller J., Mecham R. P., Florer J. B., Wenstrup R. J., Bonadio J. Isolation of a novel latent transforming growth factor-beta binding protein gene (LTBP-3). J Biol Chem. 1995 Apr 28;270(17):10147–10160. doi: 10.1074/jbc.270.17.10147. [DOI] [PubMed] [Google Scholar]
- Yin W., Smiley E., Germiller J., Sanguineti C., Lawton T., Pereira L., Ramirez F., Bonadio J. Primary structure and developmental expression of Fbn-1, the mouse fibrillin gene. J Biol Chem. 1995 Jan 27;270(4):1798–1806. doi: 10.1074/jbc.270.4.1798. [DOI] [PubMed] [Google Scholar]
- Yuan X., Downing A. K., Knott V., Handford P. A. Solution structure of the transforming growth factor beta-binding protein-like module, a domain associated with matrix fibrils. EMBO J. 1997 Nov 17;16(22):6659–6666. doi: 10.1093/emboj/16.22.6659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang H., Apfelroth S. D., Hu W., Davis E. C., Sanguineti C., Bonadio J., Mecham R. P., Ramirez F. Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol. 1994 Mar;124(5):855–863. doi: 10.1083/jcb.124.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang H., Hu W., Ramirez F. Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol. 1995 May;129(4):1165–1176. doi: 10.1083/jcb.129.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao Z., Lee C. C., Jiralerspong S., Juyal R. C., Lu F., Baldini A., Greenberg F., Caskey C. T., Patel P. I. The gene for a human microfibril-associated glycoprotein is commonly deleted in Smith-Magenis syndrome patients. Hum Mol Genet. 1995 Apr;4(4):589–597. doi: 10.1093/hmg/4.4.589. [DOI] [PubMed] [Google Scholar]
- Zimmermann D. R., Dours-Zimmermann M. T., Schubert M., Bruckner-Tuderman L. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J Cell Biol. 1994 Mar;124(5):817–825. doi: 10.1083/jcb.124.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]