Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Nov;37(11):842–850. doi: 10.1136/jmg.37.11.842

Increase of FMRP expression, raised levels of FMR1 mRNA, and clonal selection in proliferating cells with unmethylated fragile X repeat expansions: a clue to the sex bias in the transmission of full mutations?

U Salat 1, B Bardoni 1, D Wohrle 1, P Steinbach 1
PMCID: PMC1734474  PMID: 11073538

Abstract

Fragile X syndrome is a triplet repeat disorder caused by expansions of a CGG repeat in the fragile X mental retardation gene (FMR1) to more than 220 triplets (full mutation) that usually coincide with hypermethylation and transcriptional silencing. The disease phenotype results from deficiency or loss of FMR1 protein (FMRP) and occurs in both sexes. The underlying full mutations arise exclusively on transmission from a mother who carries a premutation allele (60-200 CGGs). While the absolute requirement of female transmission could result from different mechanisms, current evidence favours selection or contraction processes acting at gametogenesis of pre- and full mutation males. To address these questions experimentally, we used a model system of cultured fibroblasts from a male who presented heterogeneous unmethylated expansions in the pre- and full mutation size range. On continual cell proliferation to 30 doublings we re-examined the behaviour of the expanded repeats on Southern blots and also determined the expression of the FMR1 gene by FMRP immunocytochemistry, western analysis, and RT-PCR. With increasing population doublings, expansion patterns changed and showed accumulation of shorter alleles. The FMRP levels were below normal but increased continuously while the cells that were immunoreactive for FMRP accumulated. The level of FMR1 mRNA was raised with even higher levels of mRNA measured at higher passages. Current results support the theory of a selection advantage of FMRP positive over FMRP deficient cells. During extensive proliferation of spermatogonia in fragile X males, this selection mechanism would eventually replace all full mutations by shorter alleles allowing more efficient FMRP translation. At the proliferation of oogonia of carrier females, the same mechanism would, in theory, favour transmission of any expanded FMR1 allele on inactive X chromosomes.


Keywords: fragile X syndrome; triplet repeat instability; FMRP; spermatogenesis

Full Text

The Full Text of this article is available as a PDF (239.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. T., Sutcliffe J. S., Kunst C. B., Leiner H. A., Eichler E. E., Nelson D. L., Warren S. T. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG-repeat. Nat Genet. 1993 Jul;4(3):244–251. doi: 10.1038/ng0793-244. [DOI] [PubMed] [Google Scholar]
  2. Bell M. V., Hirst M. C., Nakahori Y., MacKinnon R. N., Roche A., Flint T. J., Jacobs P. A., Tommerup N., Tranebjaerg L., Froster-Iskenius U. Physical mapping across the fragile X: hypermethylation and clinical expression of the fragile X syndrome. Cell. 1991 Feb 22;64(4):861–866. doi: 10.1016/0092-8674(91)90514-y. [DOI] [PubMed] [Google Scholar]
  3. Burman R. W., Popovich B. W., Jacky P. B., Turker M. S. Fully expanded FMR1 CGG repeats exhibit a length- and differentiation-dependent instability in cell hybrids that is independent of DNA methylation. Hum Mol Genet. 1999 Nov;8(12):2293–2302. doi: 10.1093/hmg/8.12.2293. [DOI] [PubMed] [Google Scholar]
  4. Burman R. W., Yates P. A., Green L. D., Jacky P. B., Turker M. S., Popovich B. W. Hypomethylation of an expanded FMR1 allele is not associated with a global DNA methylation defect. Am J Hum Genet. 1999 Nov;65(5):1375–1386. doi: 10.1086/302628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bächner D., Manca A., Steinbach P., Wöhrle D., Just W., Vogel W., Hameister H., Poustka A. Enhanced expression of the murine FMR1 gene during germ cell proliferation suggests a special function in both the male and the female gonad. Hum Mol Genet. 1993 Dec;2(12):2043–2050. doi: 10.1093/hmg/2.12.2043. [DOI] [PubMed] [Google Scholar]
  6. Bächner D., Stéinbach P., Wöhrle D., Just W., Vogel W., Hameister H., Manca A., Poustka A. Enhanced Fmr-1 expression in testis. Nat Genet. 1993 Jun;4(2):115–116. doi: 10.1038/ng0693-115. [DOI] [PubMed] [Google Scholar]
  7. Chen X., Mariappan S. V., Moyzis R. K., Bradbury E. M., Gupta G. Hairpin induced slippage and hyper-methylation of the fragile X DNA triplets. J Biomol Struct Dyn. 1998 Feb;15(4):745–756. doi: 10.1080/07391102.1998.10508989. [DOI] [PubMed] [Google Scholar]
  8. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coffee B., Zhang F., Warren S. T., Reines D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat Genet. 1999 May;22(1):98–101. doi: 10.1038/8807. [DOI] [PubMed] [Google Scholar]
  10. Comery T. A., Harris J. B., Willems P. J., Oostra B. A., Irwin S. A., Weiler I. J., Greenough W. T. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5401–5404. doi: 10.1073/pnas.94.10.5401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Devys D., Biancalana V., Rousseau F., Boué J., Mandel J. L., Oberlé I. Analysis of full fragile X mutations in fetal tissues and monozygotic twins indicate that abnormal methylation and somatic heterogeneity are established early in development. 1992 Apr 15-May 1Am J Med Genet. 43(1-2):208–216. doi: 10.1002/ajmg.1320430134. [DOI] [PubMed] [Google Scholar]
  12. Devys D., Lutz Y., Rouyer N., Bellocq J. P., Mandel J. L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet. 1993 Aug;4(4):335–340. doi: 10.1038/ng0893-335. [DOI] [PubMed] [Google Scholar]
  13. Drouin R., Angers M., Dallaire N., Rose T. M., Khandjian E. W., Rousseau F. Structural and functional characterization of the human FMR1 promoter reveals similarities with the hnRNP-A2 promoter region. Hum Mol Genet. 1997 Nov;6(12):2051–2060. doi: 10.1093/hmg/6.12.2051. [DOI] [PubMed] [Google Scholar]
  14. Eberhart D. E., Malter H. E., Feng Y., Warren S. T. The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet. 1996 Aug;5(8):1083–1091. doi: 10.1093/hmg/5.8.1083. [DOI] [PubMed] [Google Scholar]
  15. Edwards J. H. Familiarity, recessivity and germline mosaicism. Ann Hum Genet. 1989 Jan;53(Pt 1):33–47. doi: 10.1111/j.1469-1809.1989.tb01120.x. [DOI] [PubMed] [Google Scholar]
  16. Feng Y., Absher D., Eberhart D. E., Brown V., Malter H. E., Warren S. T. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol Cell. 1997 Dec;1(1):109–118. doi: 10.1016/s1097-2765(00)80012-x. [DOI] [PubMed] [Google Scholar]
  17. Feng Y., Gutekunst C. A., Eberhart D. E., Yi H., Warren S. T., Hersch S. M. Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci. 1997 Mar 1;17(5):1539–1547. doi: 10.1523/JNEUROSCI.17-05-01539.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Feng Y., Zhang F., Lokey L. K., Chastain J. L., Lakkis L., Eberhart D., Warren S. T. Translational suppression by trinucleotide repeat expansion at FMR1. Science. 1995 May 5;268(5211):731–734. doi: 10.1126/science.7732383. [DOI] [PubMed] [Google Scholar]
  19. Fu Y. H., Kuhl D. P., Pizzuti A., Pieretti M., Sutcliffe J. S., Richards S., Verkerk A. J., Holden J. J., Fenwick R. G., Jr, Warren S. T. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991 Dec 20;67(6):1047–1058. doi: 10.1016/0092-8674(91)90283-5. [DOI] [PubMed] [Google Scholar]
  20. Gläser D., Wöhrle D., Salat U., Vogel W., Steinbach P. Mitotic behavior of expanded CGG repeats studied on cultured cells: further evidence for methylation-mediated triplet repeat stability in fragile X syndrome. Am J Med Genet. 1999 May 28;84(3):226–228. [PubMed] [Google Scholar]
  21. Hagerman R. J., Hull C. E., Safanda J. F., Carpenter I., Staley L. W., O'Connor R. A., Seydel C., Mazzocco M. M., Snow K., Thibodeau S. N. High functioning fragile X males: demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. Am J Med Genet. 1994 Jul 15;51(4):298–308. doi: 10.1002/ajmg.1320510404. [DOI] [PubMed] [Google Scholar]
  22. Hansen R. S., Gartler S. M., Scott C. R., Chen S. H., Laird C. D. Methylation analysis of CGG sites in the CpG island of the human FMR1 gene. Hum Mol Genet. 1992 Nov;1(8):571–578. doi: 10.1093/hmg/1.8.571. [DOI] [PubMed] [Google Scholar]
  23. Heitz D., Devys D., Imbert G., Kretz C., Mandel J. L. Inheritance of the fragile X syndrome: size of the fragile X premutation is a major determinant of the transition to full mutation. J Med Genet. 1992 Nov;29(11):794–801. doi: 10.1136/jmg.29.11.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hergersberg M., Matsuo K., Gassmann M., Schaffner W., Lüscher B., Rülicke T., Aguzzi A. Tissue-specific expression of a FMR1/beta-galactosidase fusion gene in transgenic mice. Hum Mol Genet. 1995 Mar;4(3):359–366. doi: 10.1093/hmg/4.3.359. [DOI] [PubMed] [Google Scholar]
  25. Hornstra I. K., Nelson D. L., Warren S. T., Yang T. P. High resolution methylation analysis of the FMR1 gene trinucleotide repeat region in fragile X syndrome. Hum Mol Genet. 1993 Oct;2(10):1659–1665. doi: 10.1093/hmg/2.10.1659. [DOI] [PubMed] [Google Scholar]
  26. Hwu W. L., Lee Y. M., Lee S. C., Wang T. R. In vitro DNA methylation inhibits FMR-1 promoter. Biochem Biophys Res Commun. 1993 May 28;193(1):324–329. doi: 10.1006/bbrc.1993.1627. [DOI] [PubMed] [Google Scholar]
  27. Khandjian E. W., Corbin F., Woerly S., Rousseau F. The fragile X mental retardation protein is associated with ribosomes. Nat Genet. 1996 Jan;12(1):91–93. doi: 10.1038/ng0196-91. [DOI] [PubMed] [Google Scholar]
  28. Khandjian E. W., Fortin A., Thibodeau A., Tremblay S., Côté F., Devys D., Mandel J. L., Rousseau F. A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum Mol Genet. 1995 May;4(5):783–789. doi: 10.1093/hmg/4.5.783. [DOI] [PubMed] [Google Scholar]
  29. Levinson G., Gutman G. A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 1987 Jul 10;15(13):5323–5338. doi: 10.1093/nar/15.13.5323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Malter H. E., Iber J. C., Willemsen R., de Graaff E., Tarleton J. C., Leisti J., Warren S. T., Oostra B. A. Characterization of the full fragile X syndrome mutation in fetal gametes. Nat Genet. 1997 Feb;15(2):165–169. doi: 10.1038/ng0297-165. [DOI] [PubMed] [Google Scholar]
  31. McMurray C. T. DNA secondary structure: a common and causative factor for expansion in human disease. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1823–1825. doi: 10.1073/pnas.96.5.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McMurray C. T. Mechanisms of DNA expansion. Chromosoma. 1995 Oct;104(1):2–13. doi: 10.1007/BF00352220. [DOI] [PubMed] [Google Scholar]
  33. Meijer H., de Graaff E., Merckx D. M., Jongbloed R. J., de Die-Smulders C. E., Engelen J. J., Fryns J. P., Curfs P. M., Oostra B. A. A deletion of 1.6 kb proximal to the CGG repeat of the FMR1 gene causes the clinical phenotype of the fragile X syndrome. Hum Mol Genet. 1994 Apr;3(4):615–620. doi: 10.1093/hmg/3.4.615. [DOI] [PubMed] [Google Scholar]
  34. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Morton J. E., Bundey S., Webb T. P., MacDonald F., Rindl P. M., Bullock S. Fragile X syndrome is less common than previously estimated. J Med Genet. 1997 Jan;34(1):1–5. doi: 10.1136/jmg.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nolin S. L., Houck G. E., Jr, Gargano A. D., Blumstein H., Dobkin C. S., Brown W. T. FMR1 CGG-repeat instability in single sperm and lymphocytes of fragile-X premutation males. Am J Hum Genet. 1999 Sep;65(3):680–688. doi: 10.1086/302543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Oberlé I., Rousseau F., Heitz D., Kretz C., Devys D., Hanauer A., Boué J., Bertheas M. F., Mandel J. L. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science. 1991 May 24;252(5009):1097–1102. doi: 10.1126/science.252.5009.1097. [DOI] [PubMed] [Google Scholar]
  38. Pieretti M., Zhang F. P., Fu Y. H., Warren S. T., Oostra B. A., Caskey C. T., Nelson D. L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991 Aug 23;66(4):817–822. doi: 10.1016/0092-8674(91)90125-i. [DOI] [PubMed] [Google Scholar]
  39. Reyniers E., Vits L., De Boulle K., Van Roy B., Van Velzen D., de Graaff E., Verkerk A. J., Jorens H. Z., Darby J. K., Oostra B. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nat Genet. 1993 Jun;4(2):143–146. doi: 10.1038/ng0693-143. [DOI] [PubMed] [Google Scholar]
  40. Rousseau F., Heitz D., Biancalana V., Blumenfeld S., Kretz C., Boué J., Tommerup N., Van Der Hagen C., DeLozier-Blanchet C., Croquette M. F. Direct diagnosis by DNA analysis of the fragile X syndrome of mental retardation. N Engl J Med. 1991 Dec 12;325(24):1673–1681. doi: 10.1056/NEJM199112123252401. [DOI] [PubMed] [Google Scholar]
  41. Rousseau F., Heitz D., Tarleton J., MacPherson J., Malmgren H., Dahl N., Barnicoat A., Mathew C., Mornet E., Tejada I. A multicenter study on genotype-phenotype correlations in the fragile X syndrome, using direct diagnosis with probe StB12.3: the first 2,253 cases. Am J Hum Genet. 1994 Aug;55(2):225–237. [PMC free article] [PubMed] [Google Scholar]
  42. Sandberg G., Schalling M. Effect of in vitro promoter methylation and CGG repeat expansion on FMR-1 expression. Nucleic Acids Res. 1997 Jul 15;25(14):2883–2887. doi: 10.1093/nar/25.14.2883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schwemmle S. In vivo footprinting analysis of the FMR1 gene: proposals concerning gene regulation in high-functioning males. Am J Med Genet. 1999 May 28;84(3):266–267. [PubMed] [Google Scholar]
  44. Schwemmle S., de Graaff E., Deissler H., Gläser D., Wöhrle D., Kennerknecht I., Just W., Oostra B. A., Döerfler W., Vogel W. Characterization of FMR1 promoter elements by in vivo-footprinting analysis. Am J Hum Genet. 1997 Jun;60(6):1354–1362. doi: 10.1086/515456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sherman S. L., Jacobs P. A., Morton N. E., Froster-Iskenius U., Howard-Peebles P. N., Nielsen K. B., Partington M. W., Sutherland G. R., Turner G., Watson M. Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Hum Genet. 1985;69(4):289–299. doi: 10.1007/BF00291644. [DOI] [PubMed] [Google Scholar]
  46. Smith S. S. Stalling of DNA methyltransferase in chromosome stability and chromosome remodelling (Review). Int J Mol Med. 1998 Jan;1(1):147–156. [PubMed] [Google Scholar]
  47. Steinbach P., Wöhrle D., Tariverdian G., Kennerknecht I., Barbi G., Edlinger H., Enders H., Götz-Sothmann M., Heilbronner H., Hosenfeld D. Molecular analysis of mutations in the gene FMR-1 segregating in fragile X families. Hum Genet. 1993 Nov;92(5):491–498. doi: 10.1007/BF00216457. [DOI] [PubMed] [Google Scholar]
  48. Stöger R., Kajimura T. M., Brown W. T., Laird C. D. Epigenetic variation illustrated by DNA methylation patterns of the fragile-X gene FMR1. Hum Mol Genet. 1997 Oct;6(11):1791–1801. doi: 10.1093/hmg/6.11.1791. [DOI] [PubMed] [Google Scholar]
  49. Sutcliffe J. S., Nelson D. L., Zhang F., Pieretti M., Caskey C. T., Saxe D., Warren S. T. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992 Sep;1(6):397–400. doi: 10.1093/hmg/1.6.397. [DOI] [PubMed] [Google Scholar]
  50. Tassone F., Hagerman R. J., Taylor A. K., Gane L. W., Godfrey T. E., Hagerman P. J. Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet. 2000 Jan;66(1):6–15. doi: 10.1086/302720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Turner G., Webb T., Wake S., Robinson H. Prevalence of fragile X syndrome. Am J Med Genet. 1996 Jul 12;64(1):196–197. doi: 10.1002/(SICI)1096-8628(19960712)64:1<196::AID-AJMG35>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  52. Verkerk A. J., Pieretti M., Sutcliffe J. S., Fu Y. H., Kuhl D. P., Pizzuti A., Reiner O., Richards S., Victoria M. F., Zhang F. P. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991 May 31;65(5):905–914. doi: 10.1016/0092-8674(91)90397-h. [DOI] [PubMed] [Google Scholar]
  53. Weiler I. J., Irwin S. A., Klintsova A. Y., Spencer C. M., Brazelton A. D., Miyashiro K., Comery T. A., Patel B., Eberwine J., Greenough W. T. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5395–5400. doi: 10.1073/pnas.94.10.5395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wells R. D. Molecular basis of genetic instability of triplet repeats. J Biol Chem. 1996 Feb 9;271(6):2875–2878. doi: 10.1074/jbc.271.6.2875. [DOI] [PubMed] [Google Scholar]
  55. Willemsen R., Mohkamsing S., de Vries B., Devys D., van den Ouweland A., Mandel J. L., Galjaard H., Oostra B. Rapid antibody test for fragile X syndrome. Lancet. 1995 May 6;345(8958):1147–1148. doi: 10.1016/s0140-6736(95)90979-6. [DOI] [PubMed] [Google Scholar]
  56. Wöhrle D., Hennig I., Vogel W., Steinbach P. Mitotic stability of fragile X mutations in differentiated cells indicates early post-conceptional trinucleotide repeat expansion. Nat Genet. 1993 Jun;4(2):140–142. doi: 10.1038/ng0693-140. [DOI] [PubMed] [Google Scholar]
  57. Wöhrle D., Hirst M. C., Kennerknecht I., Davies K. E., Steinbach P. Genotype mosaicism in fragile X fetal tissues. Hum Genet. 1992 Apr;89(1):114–116. doi: 10.1007/BF00207057. [DOI] [PubMed] [Google Scholar]
  58. Wöhrle D., Kennerknecht I., Wolf M., Enders H., Schwemmle S., Steinbach P. Heterogeneity of DM kinase repeat expansion in different fetal tissues and further expansion during cell proliferation in vitro: evidence for a casual involvement of methyl-directed DNA mismatch repair in triplet repeat stability. Hum Mol Genet. 1995 Jul;4(7):1147–1153. doi: 10.1093/hmg/4.7.1147. [DOI] [PubMed] [Google Scholar]
  59. Wöhrle D., Salat U., Gläser D., Mücke J., Meisel-Stosiek M., Schindler D., Vogel W., Steinbach P. Unusual mutations in high functioning fragile X males: apparent instability of expanded unmethylated CGG repeats. J Med Genet. 1998 Feb;35(2):103–111. doi: 10.1136/jmg.35.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wöhrle D., Schwemmle S., Steinbach P. DNA methylation and triplet repeat stability: new proposals addressing actual questions on the CGG repeat of fragile X syndrome. Am J Med Genet. 1996 Aug 9;64(2):266–267. doi: 10.1002/ajmg.1320640202. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES