Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Nov;37(11):858–865. doi: 10.1136/jmg.37.11.858

Disease associated balanced chromosome rearrangements: a resource for large scale genotype-phenotype delineation in man

M Bugge 1, G Bruun-Petersen 1, K Brondum-Nielsen 1, U Friedrich 1, J Hansen 1, G Jensen 1, P Jensen 1, U Kristoffersson 1, C Lundsteen 1, E Niebuhr 1, K Rasmussen 1, K Rasmussen 1, N Tommerup 1
PMCID: PMC1734480  PMID: 11073540

Abstract

Disease associated balanced chromosomal rearrangements (DBCRs), which truncate, delete, or otherwise inactivate specific genes, have been instrumental for positional cloning of many disease genes. A network of cytogenetic laboratories, Mendelian Cytogenetics Network (MCN), has been established to facilitate the identification and mapping of DBCRs. To get an estimate of the potential of this approach, we surveyed all cytogenetic archives in Denmark and southern Sweden, with a population of ~6.6 million. The nine laboratories have performed 71 739 postnatal cytogenetic tests. Excluding Robertsonian translocations and chromosome 9 inversions, we identified 216 DBCRs (~0.3%), including a minimum estimate of 114 de novo reciprocal translocations (0.16%) and eight de novo inversions (0.01%). Altogether, this is six times more frequent than in the general population, suggesting a causal relationship with the traits involved in most of these cases. Of the identified cases, only 25 (12%) have been published, including 12 cases with known syndromes and 13 cases with unspecified mental retardation/congenital malformations. The remaining DBCRs were associated with a plethora of traits including mental retardation, dysmorphic features, major congenital malformations, autism, and male and female infertility. Several of the unpublished DBCRs defined candidate breakpoints for nail-patella, Prader-Willi, and Schmidt syndromes, ataxia, and ulna aplasia. The implication of the survey is apparent when compared with MCN; altogether, the 292 participating laboratories have performed >2.5 million postnatal analyses, with an estimated ~7500 DBCRs stored in their archives, of which more than half might be causative mutations. In addition, an estimated 450-500 novel cases should be detected each year. Our data illustrate that DBCRs and MCN are resources for large scale establishment of phenotype-genotype relationships in man.


Keywords: translocations; inversions; abnormal phenotypes; frequency

Full Text

The Full Text of this article is available as a PDF (110.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggesen K., Friedrich U., Jensen P. K., Rasmussen K. Three large Danish families with a paracentric inversion in the short arm of chromosome N. 5. Ann Genet. 1988;31(1):50–52. [PubMed] [Google Scholar]
  2. Billuart P., Bienvenu T., Ronce N., des Portes V., Vinet M. C., Zemni R., Roest Crollius H., Carrié A., Fauchereau F., Cherry M. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature. 1998 Apr 30;392(6679):923–926. doi: 10.1038/31940. [DOI] [PubMed] [Google Scholar]
  3. Bjerglund Nielsen L., Nielsen I. M. Turner's syndrome and Duchenne muscular dystrophy in a girl with an X; autosome translocation. Ann Genet. 1984;27(3):173–177. [PubMed] [Google Scholar]
  4. Brandt C. A., Lüdecke H. J., Hindkjaer J., Strømkjaer H., Pinkel D., Herlin T., Bolund L., Friedrich U. A de nevo complex t(7;13;8) translocation with a deletion in the TRPS gene region. Hum Genet. 1997 Sep;100(3-4):334–338. doi: 10.1007/s004390050512. [DOI] [PubMed] [Google Scholar]
  5. Bühler E. M. Unmasking of heterozygosity by inherited balanced translocations. Implications for prenatal diagnosis and gene mapping. Ann Genet. 1983;26(3):133–137. [PubMed] [Google Scholar]
  6. Collins F. S. Positional cloning moves from perditional to traditional. Nat Genet. 1995 Apr;9(4):347–350. doi: 10.1038/ng0495-347. [DOI] [PubMed] [Google Scholar]
  7. Conroy J. M., Grebe T. A., Becker L. A., Tsuchiya K., Nicholls R. D., Buiting K., Horsthemke B., Cassidy S. B., Schwartz S. Balanced translocation 46,XY,t(2;15)(q37.2;q11.2) associated with atypical Prader-Willi syndrome. Am J Hum Genet. 1997 Aug;61(2):388–394. doi: 10.1086/514852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duba H. C., Erdel M., Löffler J., Wirth J., Utermann B., Utermann G. Nail patella syndrome in a cytogenetically balanced t(9;17)(q34.1;q25) carrier. Eur J Hum Genet. 1998 Jan;6(1):75–79. doi: 10.1038/sj.ejhg.5200155. [DOI] [PubMed] [Google Scholar]
  9. Ferguson-Smith M. A., Aitken D. A., Turleau C., de Grouchy J. Localisation of the human ABO: Np-1: AK-1 linkage group by regional assignment of AK-1 to 9q34. Hum Genet. 1976 Sep 10;34(1):35–43. doi: 10.1007/BF00284432. [DOI] [PubMed] [Google Scholar]
  10. Friedrich U., Dalby M., Staehelin-Jensen T., Bruun-Petersen G. Chromosomal studies of children with developmental language retardation. Dev Med Child Neurol. 1982 Oct;24(5):645–652. doi: 10.1111/j.1469-8749.1982.tb13675.x. [DOI] [PubMed] [Google Scholar]
  11. Friedrich U., Nielsen J. Autosomal reciprocal translocations in newborn children and their relatives. Humangenetik. 1974 Feb 21;21(2):133–144. doi: 10.1007/BF00281032. [DOI] [PubMed] [Google Scholar]
  12. Funderburk S. J., Spence M. A., Sparkes R. S. Mental retardation associated with "balanced" chromosome rearrangements. Am J Hum Genet. 1977 Mar;29(2):136–141. [PMC free article] [PubMed] [Google Scholar]
  13. Gerdes A. M., Petersen M. B., Schrøder H. D., Wulff K., Brøndum-Nielsen K. Congenital myopathy with fiber type disproportion: a family with a chromosomal translocation t(10;17) may indicate candidate gene regions. Clin Genet. 1994 Jan;45(1):11–16. doi: 10.1111/j.1399-0004.1994.tb03982.x. [DOI] [PubMed] [Google Scholar]
  14. Gleeson J. G., Allen K. M., Fox J. W., Lamperti E. D., Berkovic S., Scheffer I., Cooper E. C., Dobyns W. B., Minnerath S. R., Ross M. E. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell. 1998 Jan 9;92(1):63–72. doi: 10.1016/s0092-8674(00)80899-5. [DOI] [PubMed] [Google Scholar]
  15. Gustavsson P., Skeppner G., Johansson B., Berg T., Gordon L., Kreuger A., Dahl N. Diamond-Blackfan anaemia in a girl with a de novo balanced reciprocal X;19 translocation. J Med Genet. 1997 Sep;34(9):779–782. doi: 10.1136/jmg.34.9.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kousseff B. G. The cytogenetic controversy in the Prader-Labhart-Willi syndrome. Am J Med Genet. 1982 Dec;13(4):431–439. doi: 10.1002/ajmg.1320130412. [DOI] [PubMed] [Google Scholar]
  17. Kuslich C. D., Kobori J. A., Mohapatra G., Gregorio-King C., Donlon T. A. Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet. 1999 Jan;64(1):70–76. doi: 10.1086/302177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ledbetter D. H., Riccardi V. M., Airhart S. D., Strobel R. J., Keenan B. S., Crawford J. D. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981 Feb 5;304(6):325–329. doi: 10.1056/NEJM198102053040604. [DOI] [PubMed] [Google Scholar]
  19. Nielsen J., Krag-Olsen B. Follow-up of 32 children with autosomal translocations found among 11,148 consecutively newborn children from 1969 to 1974. Clin Genet. 1981 Jul;20(1):48–54. doi: 10.1111/j.1399-0004.1981.tb01806.x. [DOI] [PubMed] [Google Scholar]
  20. Nielsen J., Sillesen I. Incidence of chromosome aberrations among 11148 newborn children. Humangenetik. 1975 Oct 20;30(1):1–12. doi: 10.1007/BF00273626. [DOI] [PubMed] [Google Scholar]
  21. Petersen F., Knudsen F. U., Nielsen M. D., Mikkelsen M. Congenital adrenal hyperplasia associated with a balanced 13--18 translocation. Eur J Pediatr. 1980 May;133(3):283–285. doi: 10.1007/BF00496091. [DOI] [PubMed] [Google Scholar]
  22. Powell C. M., Taggart R. T., Drumheller T. C., Wangsa D., Qian C., Nelson L. M., White B. J. Molecular and cytogenetic studies of an X;autosome translocation in a patient with premature ovarian failure and review of the literature. Am J Med Genet. 1994 Aug 1;52(1):19–26. doi: 10.1002/ajmg.1320520105. [DOI] [PubMed] [Google Scholar]
  23. Rasmussen K., Nielsen J., Dahl G. The prevalence of chromosome abnormalities among mentally retarded persons in a geographically delimited area of Denmark. Clin Genet. 1982 Nov;22(5):244–255. doi: 10.1111/j.1399-0004.1982.tb01441.x. [DOI] [PubMed] [Google Scholar]
  24. Riegel M., Castellan C., Balmer D., Brecevic L., Schinzel A. Terminal deletion, del(1)(p36.3), detected through screening for terminal deletions in patients with unclassified malformation syndromes. Am J Med Genet. 1999 Jan 29;82(3):249–253. doi: 10.1002/(sici)1096-8628(19990129)82:3<249::aid-ajmg10>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  25. Schulze A., Hansen C., Skakkebaek N. E., Brøndum-Nielsen K., Ledbeter D. H., Tommerup N. Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Nat Genet. 1996 Apr;12(4):452–454. doi: 10.1038/ng0496-452. [DOI] [PubMed] [Google Scholar]
  26. Silahtaroglu A., Hol F. A., Jensen P. K., Erdel M., Duba H. C., Geurds M. P., Knoers N. V., Mariman E. C., Tümer Z., Utermann G. Molecular cytogenetic detection of 9q34 breakpoints associated with nail patella syndrome. Eur J Hum Genet. 1999 Jan;7(1):68–76. doi: 10.1038/sj.ejhg.5200260. [DOI] [PubMed] [Google Scholar]
  27. Skovby F., Niebuhr E. Presumably balanced translocations involving the same band of chromosome No. 4 found in two mentally retarded, dysmorphic individuals. Ann Genet. 1974 Dec;17(4):243–249. [PubMed] [Google Scholar]
  28. Slavotinek A., Rosenberg M., Knight S., Gaunt L., Fergusson W., Killoran C., Clayton-Smith J., Kingston H., Campbell R. H., Flint J. Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres. J Med Genet. 1999 May;36(5):405–411. [PMC free article] [PubMed] [Google Scholar]
  29. Sun Y., Nicholls R. D., Butler M. G., Saitoh S., Hainline B. E., Palmer C. G. Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Hum Mol Genet. 1996 Apr;5(4):517–524. doi: 10.1093/hmg/5.4.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sørensen K., Nielsen J., Holm V., Haahr J. Fragile site long arm chromosome 16. Hum Genet. 1979 Apr 17;48(1):131–134. doi: 10.1007/BF00273287. [DOI] [PubMed] [Google Scholar]
  31. Tinning S., Jacobsen P., Mikkelsen M. A, 1;6, translocation associated with congenital glaucoma and cleft lip and palate. Hum Hered. 1975;25(6):453–460. doi: 10.1159/000152760. [DOI] [PubMed] [Google Scholar]
  32. Tommerup N., Brandt C. A., Pedersen S., Bolund L., Kamper J. Sex dependent transmission of Beckwith-Wiedemann syndrome associated with a reciprocal translocation t(9;11)(p11.2;p15.5). J Med Genet. 1993 Nov;30(11):958–961. doi: 10.1136/jmg.30.11.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tommerup N. Mendelian cytogenetics. Chromosome rearrangements associated with mendelian disorders. J Med Genet. 1993 Sep;30(9):713–727. doi: 10.1136/jmg.30.9.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tommerup N., Nielsen F. A familial reciprocal translocation t(3;7) (p21.1;p13) associated with the Greig polysyndactyly-craniofacial anomalies syndrome. Am J Med Genet. 1983 Nov;16(3):313–321. doi: 10.1002/ajmg.1320160304. [DOI] [PubMed] [Google Scholar]
  35. Tranebjaerg L., Sjø O., Warburg M. Retinal cone dysfunction and mental retardation associated with a de novo balanced translocation 1;6(q44;q27). Ophthalmic Paediatr Genet. 1986 Dec;7(3):167–173. doi: 10.3109/13816818609004134. [DOI] [PubMed] [Google Scholar]
  36. Warburg M., Bugge M., Brøndum-Nielsen K. Cytogenetic findings indicate heterogeneity in patients with blepharophimosis, epicanthus inversus, and developmental delay. J Med Genet. 1995 Jan;32(1):19–24. doi: 10.1136/jmg.32.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet. 1991 Nov;49(5):995–1013. [PMC free article] [PubMed] [Google Scholar]
  38. Wirth J., Nothwang H. G., van der Maarel S., Menzel C., Borck G., Lopez-Pajares I., Brøndum-Nielsen K., Tommerup N., Bugge M., Ropers H. H. Systematic characterisation of disease associated balanced chromosome rearrangements by FISH: cytogenetically and genetically anchored YACs identify microdeletions and candidate regions for mental retardation genes. J Med Genet. 1999 Apr;36(4):271–278. [PMC free article] [PubMed] [Google Scholar]
  39. van der Maarel S. M., Scholten I. H., Huber I., Philippe C., Suijkerbuijk R. F., Gilgenkrantz S., Kere J., Cremers F. P., Ropers H. H. Cloning and characterization of DXS6673E, a candidate gene for X-linked mental retardation in Xq13.1. Hum Mol Genet. 1996 Jul;5(7):887–897. doi: 10.1093/hmg/5.7.887. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES