Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Dec;37(12):921–926. doi: 10.1136/jmg.37.12.921

Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome

J Engel 1, A Smallwood 1, A Harper 1, M Higgins 1, M Oshimura 1, W Reik 1, P Schofield 1, E Maher 1
PMCID: PMC1734494  PMID: 11106355

Abstract

Beckwith-Wiedemann syndrome (BWS) is a model imprinting disorder resulting from mutations or epigenetic events involving imprinted genes at chromosome 11p15.5. Thus, germline mutations in CDKN1C, uniparental disomy (UPD), and loss of imprinting of IGF2 and other imprinted genes have been implicated. Many familial BWS cases have germline CDKN1C mutations. However, most BWS cases are sporadic and UPD or putative imprinting errors predominate in this group. We have identified previously a subgroup of sporadic cases with loss of imprinting (LOI) of IGF2 and epigenetic silencing of H19 proposed to be caused by a defect in a distal 11p15.5 imprinting control element (designated BWSIC1). However, many sporadic BWS patients show biallelic IGF2 expression in the presence of normal H19 methylation and expression patterns. This and other evidence suggested the existence of a further imprinting control element (BWSIC2) at 11p15.5. Recently, we showed that a subgroup of BWS patients have loss of methylation (LOM) at a differentially methylated region (KvDMR1) within the KCNQ1 gene centromeric to the IGF2 and H19 genes. We have now analysed a large series of sporadic cases to define the frequency and phenotypic correlates of epigenetic abnormalities in BWS. LOM at KvDMR1 was detected by Southern analysis or a novel PCR based method in 35 of 69 (51%) sporadic BWS without UPD. LOM at KvDMR1 was often, but not invariably associated with LOI of IGF2. KvDMR1 LOM was not detected in BWS patients with putative BWSIC1 defects and cases with KvDMR1 LOM (that is, putative BWSIC2 defects) invariably had a normal H19 methylation pattern. The incidence of exomphalos in putative BWSIC2 defect patients was not significantly different from that in patients with germline CDKN1C mutations (20/29 and 13/15 respectively), but was significantly greater than that in patients with putative BWSIC1 defects (0/5, p=0.007) and UPD (0/22, p<0.0001). These findings are consistent with the hypothesis that LOM of KvDMR1 (BWSIC2 defect) results in epigenetic silencing of CDKN1C and variable LOI of IGF2. BWS patients with embryonal tumours have UPD or a BWSIC1 defect but not LOM of KvDMR1. This study has further shown how (1) variations in phenotypic expression of BWS may be linked to specific molecular subgroups and (2) molecular analysis of BWS can provide insights into mechanisms of imprinting regulation.


Keywords: Beckwith-Wiedemann syndrome; epigenotype-phenotype correlations; imprinting

Full Text

The Full Text of this article is available as a PDF (155.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell A. C., Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000 May 25;405(6785):482–485. doi: 10.1038/35013100. [DOI] [PubMed] [Google Scholar]
  2. Brown K. W., Villar A. J., Bickmore W., Clayton-Smith J., Catchpoole D., Maher E. R., Reik W. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet. 1996 Dec;5(12):2027–2032. doi: 10.1093/hmg/5.12.2027. [DOI] [PubMed] [Google Scholar]
  3. Buiting K., Dittrich B., Gross S., Lich C., Färber C., Buchholz T., Smith E., Reis A., Bürger J., Nöthen M. M. Sporadic imprinting defects in Prader-Willi syndrome and Angelman syndrome: implications for imprint-switch models, genetic counseling, and prenatal diagnosis. Am J Hum Genet. 1998 Jul;63(1):170–180. doi: 10.1086/301935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caspary T., Cleary M. A., Baker C. C., Guan X. J., Tilghman S. M. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol Cell Biol. 1998 Jun;18(6):3466–3474. doi: 10.1128/mcb.18.6.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Catchpoole D., Lam W. W., Valler D., Temple I. K., Joyce J. A., Reik W., Schofield P. N., Maher E. R. Epigenetic modification and uniparental inheritance of H19 in Beckwith-Wiedemann syndrome. J Med Genet. 1997 May;34(5):353–359. doi: 10.1136/jmg.34.5.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Catchpoole D., Smallwood A. V., Joyce J. A., Murrell A., Lam W., Tang T., Munroe D., Reik W., Schofield P. N., Maher E. R. Mutation analysis of H19 and NAP1L4 (hNAP2) candidate genes and IGF2 DMR2 in Beckwith-Wiedemann syndrome. J Med Genet. 2000 Mar;37(3):212–215. doi: 10.1136/jmg.37.3.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dittrich B., Buiting K., Korn B., Rickard S., Buxton J., Saitoh S., Nicholls R. D., Poustka A., Winterpacht A., Zabel B. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet. 1996 Oct;14(2):163–170. doi: 10.1038/ng1096-163. [DOI] [PubMed] [Google Scholar]
  8. Elliott M., Maher E. R. Beckwith-Wiedemann syndrome. J Med Genet. 1994 Jul;31(7):560–564. doi: 10.1136/jmg.31.7.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hark A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M., Tilghman S. M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000 May 25;405(6785):486–489. doi: 10.1038/35013106. [DOI] [PubMed] [Google Scholar]
  10. Hatada I., Nabetani A., Morisaki H., Xin Z., Ohishi S., Tonoki H., Niikawa N., Inoue M., Komoto Y., Okada A. New p57KIP2 mutations in Beckwith-Wiedemann syndrome. Hum Genet. 1997 Oct;100(5-6):681–683. doi: 10.1007/s004390050573. [DOI] [PubMed] [Google Scholar]
  11. Hatada I., Ohashi H., Fukushima Y., Kaneko Y., Inoue M., Komoto Y., Okada A., Ohishi S., Nabetani A., Morisaki H. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996 Oct;14(2):171–173. doi: 10.1038/ng1096-171. [DOI] [PubMed] [Google Scholar]
  12. Henry I., Bonaiti-Pellié C., Chehensse V., Beldjord C., Schwartz C., Utermann G., Junien C. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature. 1991 Jun 20;351(6328):665–667. doi: 10.1038/351665a0. [DOI] [PubMed] [Google Scholar]
  13. Horike S., Mitsuya K., Meguro M., Kotobuki N., Kashiwagi A., Notsu T., Schulz T. C., Shirayoshi Y., Oshimura M. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet. 2000 Sep 1;9(14):2075–2083. doi: 10.1093/hmg/9.14.2075. [DOI] [PubMed] [Google Scholar]
  14. John R. M., Hodges M., Little P., Barton S. C., Surani M. A. A human p57(KIP2) transgene is not activated by passage through the maternal mouse germline. Hum Mol Genet. 1999 Nov;8(12):2211–2219. doi: 10.1093/hmg/8.12.2211. [DOI] [PubMed] [Google Scholar]
  15. Joyce J. A., Lam W. K., Catchpoole D. J., Jenks P., Reik W., Maher E. R., Schofield P. N. Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum Mol Genet. 1997 Sep;6(9):1543–1548. doi: 10.1093/hmg/6.9.1543. [DOI] [PubMed] [Google Scholar]
  16. Lam W. W., Hatada I., Ohishi S., Mukai T., Joyce J. A., Cole T. R., Donnai D., Reik W., Schofield P. N., Maher E. R. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet. 1999 Jul;36(7):518–523. [PMC free article] [PubMed] [Google Scholar]
  17. Lee M. P., DeBaun M. R., Mitsuya K., Galonek H. L., Brandenburg S., Oshimura M., Feinberg A. P. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5203–5208. doi: 10.1073/pnas.96.9.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee M. P., DeBaun M., Randhawa G., Reichard B. A., Elledge S. J., Feinberg A. P. Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am J Hum Genet. 1997 Aug;61(2):304–309. doi: 10.1086/514858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maher E. R., Reik W. Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J Clin Invest. 2000 Feb;105(3):247–252. doi: 10.1172/JCI9340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitsuya K., Meguro M., Lee M. P., Katoh M., Schulz T. C., Kugoh H., Yoshida M. A., Niikawa N., Feinberg A. P., Oshimura M. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet. 1999 Jul;8(7):1209–1217. doi: 10.1093/hmg/8.7.1209. [DOI] [PubMed] [Google Scholar]
  21. Morison I. M., Becroft D. M., Taniguchi T., Woods C. G., Reeve A. E. Somatic overgrowth associated with overexpression of insulin-like growth factor II. Nat Med. 1996 Mar;2(3):311–316. doi: 10.1038/nm0396-311. [DOI] [PubMed] [Google Scholar]
  22. Moulton T., Crenshaw T., Hao Y., Moosikasuwan J., Lin N., Dembitzer F., Hensle T., Weiss L., McMorrow L., Loew T. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nat Genet. 1994 Jul;7(3):440–447. doi: 10.1038/ng0794-440. [DOI] [PubMed] [Google Scholar]
  23. O'Keefe D., Dao D., Zhao L., Sanderson R., Warburton D., Weiss L., Anyane-Yeboa K., Tycko B. Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet. 1997 Aug;61(2):295–303. doi: 10.1086/514854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Obata Y., Kaneko-Ishino T., Koide T., Takai Y., Ueda T., Domeki I., Shiroishi T., Ishino F., Kono T. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development. 1998 Apr;125(8):1553–1560. doi: 10.1242/dev.125.8.1553. [DOI] [PubMed] [Google Scholar]
  25. Okamoto K., Morison I. M., Reeve A. E., Tommerup N., Wiedemann H. R., Friedrich U. Is p57KIP2 mutation a common mechanism for Beckwith-Wiedemann syndrome or somatic overgrowth? J Med Genet. 1998 Jan;35(1):86–86. doi: 10.1136/jmg.35.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
  27. Reik W., Maher E. R. Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome. Trends Genet. 1997 Aug;13(8):330–334. doi: 10.1016/s0168-9525(97)01200-6. [DOI] [PubMed] [Google Scholar]
  28. Slatter R. E., Elliott M., Welham K., Carrera M., Schofield P. N., Barton D. E., Maher E. R. Mosaic uniparental disomy in Beckwith-Wiedemann syndrome. J Med Genet. 1994 Oct;31(10):749–753. doi: 10.1136/jmg.31.10.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smilinich N. J., Day C. D., Fitzpatrick G. V., Caldwell G. M., Lossie A. C., Cooper P. R., Smallwood A. C., Joyce J. A., Schofield P. N., Reik W. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8064–8069. doi: 10.1073/pnas.96.14.8064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sperandeo M. P., Ungaro P., Vernucci M., Pedone P. V., Cerrato F., Perone L., Casola S., Cubellis M. V., Bruni C. B., Andria G. Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes. Am J Hum Genet. 2000 Mar;66(3):841–847. doi: 10.1086/302811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Squire J. A., Li M., Perlikowski S., Fei Y. L., Bayani J., Zhang Z. M., Weksberg R. Alterations of H19 imprinting and IGF2 replication timing are infrequent in Beckwith-Wiedemann syndrome. Genomics. 2000 May 1;65(3):234–242. doi: 10.1006/geno.2000.6155. [DOI] [PubMed] [Google Scholar]
  32. Steenman M. J., Rainier S., Dobry C. J., Grundy P., Horon I. L., Feinberg A. P. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet. 1994 Jul;7(3):433–439. doi: 10.1038/ng0794-433. [DOI] [PubMed] [Google Scholar]
  33. Sun F. L., Dean W. L., Kelsey G., Allen N. D., Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature. 1997 Oct 23;389(6653):809–815. doi: 10.1038/39797. [DOI] [PubMed] [Google Scholar]
  34. Tycko B. Epigenetic gene silencing in cancer. J Clin Invest. 2000 Feb;105(4):401–407. doi: 10.1172/JCI9462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
  36. Zhang P., Liégeois N. J., Wong C., Finegold M., Hou H., Thompson J. C., Silverman A., Harper J. W., DePinho R. A., Elledge S. J. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997 May 8;387(6629):151–158. doi: 10.1038/387151a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES