Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3272–3278. doi: 10.1128/iai.63.9.3272-3278.1995

Role of tumor necrosis factor alpha in innate resistance to mouse pulmonary infection with Pseudomonas aeruginosa.

D Gosselin 1, J DeSanctis 1, M Boulé 1, E Skamene 1, C Matouk 1, D Radzioch 1
PMCID: PMC173451  PMID: 7642255

Abstract

In the present study, we have investigated the mechanisms underlying mouse resistance to endobronchial infection with Pseudomonas aeruginosa enmeshed in agar beads. This was done by monitoring macrophage activation-associated gene expression in lung and alveolar cells harvested from resistant (BALB/c) and susceptible (DBA/2, C57BL/6, and A/J) strains of mice over the course of infection with P. aeruginosa. Interleukin-1 alpha, interleukin-1 beta, macrophage inflammatory protein-1 alpha, JE, and tumor necrosis factor alpha (TNF-alpha) mRNA expression levels were up-regulated in all strains of mice during the early phase of the infection. The level of TNF-alpha mRNA expression was increased to a greater extent in resistant BALB/c mice than in susceptible DBA/2, C57BL/6, and A/J strains of mice. This observation paralleled a higher secretion of TNF-alpha into the alveolar space of BALB/c mice at 3 and 6 h postinfection. The concentration of TNF-alpha released in alveoli returned to basal levels within 24 h of infection in mice of all strains, even though the TNF-alpha mRNA expression remained high until 3 days after infection. In vivo treatments with either anti-murine TNF-alpha monoclonal antibodies or with aminoguanidine significantly increased the number of P. aeruginosa bacteria detected in the lungs of resistant mice at 3 days postinfection. Overall, these findings indicate that both TNF-alpha and nitric oxide exert a protective role in response to pulmonary infection with P. aeruginosa.

Full Text

The Full Text of this article is available as a PDF (348.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. B., Franzblau S. G., Vavrin Z., Hibbs J. B., Jr, Krahenbuhl J. L. L-arginine-dependent macrophage effector functions inhibit metabolic activity of Mycobacterium leprae. J Immunol. 1991 Sep 1;147(5):1642–1646. [PubMed] [Google Scholar]
  2. Alspaugh J. A., Granger D. L. Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis. Infect Immun. 1991 Jul;59(7):2291–2296. doi: 10.1128/iai.59.7.2291-2296.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrera L. F., Kramnik I., Skamene E., Radzioch D. Nitrite production by macrophages derived from BCG-resistant and -susceptible congenic mouse strains in response to IFN-gamma and infection with BCG. Immunology. 1994 Jul;82(3):457–464. [PMC free article] [PubMed] [Google Scholar]
  4. Beckerman K. P., Rogers H. W., Corbett J. A., Schreiber R. D., McDaniel M. L., Unanue E. R. Release of nitric oxide during the T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes. J Immunol. 1993 Feb 1;150(3):888–895. [PubMed] [Google Scholar]
  5. Blanchard D. K., Djeu J. Y., Klein T. W., Friedman H., Stewart W. E., 2nd Induction of tumor necrosis factor by Legionella pneumophila. Infect Immun. 1987 Feb;55(2):433–437. doi: 10.1128/iai.55.2.433-437.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blanchard D. K., Djeu J. Y., Klein T. W., Friedman H., Stewart W. E., 2nd Protective effects of tumor necrosis factor in experimental Legionella pneumophila infections of mice via activation of PMN function. J Leukoc Biol. 1988 May;43(5):429–435. doi: 10.1002/jlb.43.5.429. [DOI] [PubMed] [Google Scholar]
  7. Buret A., Dunkley M. L., Pang G., Clancy R. L., Cripps A. W. Pulmonary immunity to Pseudomonas aeruginosa in intestinally immunized rats roles of alveolar macrophages, tumor necrosis factor alpha, and interleukin-1 alpha. Infect Immun. 1994 Dec;62(12):5335–5343. doi: 10.1128/iai.62.12.5335-5343.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cerquetti M. C., Sordelli D. O., Bellanti J. A., Hooke A. M. Lung defenses against Pseudomonas aeruginosa in C5-deficient mice with different genetic backgrounds. Infect Immun. 1986 Jun;52(3):853–857. doi: 10.1128/iai.52.3.853-857.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen W., Havell E. A., Harmsen A. G. Importance of endogenous tumor necrosis factor alpha and gamma interferon in host resistance against Pneumocystis carinii infection. Infect Immun. 1992 Apr;60(4):1279–1284. doi: 10.1128/iai.60.4.1279-1284.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cunha F. Q., Assreuy J., Moncada S., Liew F. Y. Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology. 1993 Jul;79(3):408–411. [PMC free article] [PubMed] [Google Scholar]
  11. Dunkley M. L., Clancy R. L., Cripps A. W. A role for CD4+ T cells from orally immunized rats in enhanced clearance of Pseudomonas aeruginosa from the lung. Immunology. 1994 Nov;83(3):362–369. [PMC free article] [PubMed] [Google Scholar]
  12. Evans T. G., Thai L., Granger D. L., Hibbs J. B., Jr Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis. J Immunol. 1993 Jul 15;151(2):907–915. [PubMed] [Google Scholar]
  13. Green S. J., Crawford R. M., Hockmeyer J. T., Meltzer M. S., Nacy C. A. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. J Immunol. 1990 Dec 15;145(12):4290–4297. [PubMed] [Google Scholar]
  14. Green S. J., Meltzer M. S., Hibbs J. B., Jr, Nacy C. A. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J Immunol. 1990 Jan 1;144(1):278–283. [PubMed] [Google Scholar]
  15. Hostoffer R. W., Krukovets I., Berger M. Enhancement by tumor necrosis factor-alpha of Fc alpha receptor expression and IgA-mediated superoxide generation and killing of Pseudomonas aeruginosa by polymorphonuclear leukocytes. J Infect Dis. 1994 Jul;170(1):82–87. doi: 10.1093/infdis/170.1.82. [DOI] [PubMed] [Google Scholar]
  16. Karupiah G., Xie Q. W., Buller R. M., Nathan C., Duarte C., MacMicking J. D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993 Sep 10;261(5127):1445–1448. doi: 10.1126/science.7690156. [DOI] [PubMed] [Google Scholar]
  17. Kerem E., Corey M., Kerem B. S., Rommens J., Markiewicz D., Levison H., Tsui L. C., Durie P. The relation between genotype and phenotype in cystic fibrosis--analysis of the most common mutation (delta F508). N Engl J Med. 1990 Nov 29;323(22):1517–1522. doi: 10.1056/NEJM199011293232203. [DOI] [PubMed] [Google Scholar]
  18. Kolls J. K., Beck J. M., Nelson S., Summer W. R., Shellito J. Alveolar macrophage release of tumor necrosis factor during murine Pneumocystis carinii pneumonia. Am J Respir Cell Mol Biol. 1993 Apr;8(4):370–376. doi: 10.1165/ajrcmb/8.4.370. [DOI] [PubMed] [Google Scholar]
  19. Kolls J. K., Nelson S., Summer W. R. Recombinant cytokines and pulmonary host defense. Am J Med Sci. 1993 Nov;306(5):330–335. doi: 10.1097/00000441-199311000-00012. [DOI] [PubMed] [Google Scholar]
  20. Kramnik I., Skamene E., Radzioch D. Assessment of lymphokine profiles in activated lymphocytes by semiquantitative PCR. J Immunol Methods. 1993 Jun 18;162(2):143–153. doi: 10.1016/0022-1759(93)90379-l. [DOI] [PubMed] [Google Scholar]
  21. Kronborg G., Hansen M. B., Svenson M., Fomsgaard A., Høiby N., Bendtzen K. Cytokines in sputum and serum from patients with cystic fibrosis and chronic Pseudomonas aeruginosa infection as markers of destructive inflammation in the lungs. Pediatr Pulmonol. 1993 May;15(5):292–297. doi: 10.1002/ppul.1950150506. [DOI] [PubMed] [Google Scholar]
  22. Kubesch P., Dörk T., Wulbrand U., Kälin N., Neumann T., Wulf B., Geerlings H., Weissbrodt H., von der Hardt H., Tümmler B. Genetic determinants of airways' colonisation with Pseudomonas aeruginosa in cystic fibrosis. Lancet. 1993 Jan 23;341(8839):189–193. doi: 10.1016/0140-6736(93)90062-l. [DOI] [PubMed] [Google Scholar]
  23. Liew F. Y., Millott S., Parkinson C., Palmer R. M., Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol. 1990 Jun 15;144(12):4794–4797. [PubMed] [Google Scholar]
  24. Lin J. Y., Seguin R., Keller K., Chadee K. Tumor necrosis factor alpha augments nitric oxide-dependent macrophage cytotoxicity against Entamoeba histolytica by enhanced expression of the nitric oxide synthase gene. Infect Immun. 1994 May;62(5):1534–1541. doi: 10.1128/iai.62.5.1534-1541.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ming W. J., Bersani L., Mantovani A. Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes. J Immunol. 1987 Mar 1;138(5):1469–1474. [PubMed] [Google Scholar]
  26. Misko T. P., Moore W. M., Kasten T. P., Nickols G. A., Corbett J. A., Tilton R. G., McDaniel M. L., Williamson J. R., Currie M. G. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993 Mar 16;233(1):119–125. doi: 10.1016/0014-2999(93)90357-n. [DOI] [PubMed] [Google Scholar]
  27. Mulligan M. S., Vaporciyan A. A., Miyasaka M., Tamatani T., Ward P. A. Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1. Am J Pathol. 1993 Jun;142(6):1739–1749. [PMC free article] [PubMed] [Google Scholar]
  28. Nakano M., Onozuka K., Sakamoto K., Nakano Y., Shinomiya H., Saito-Taki T. Protective effect of cytokines in mice to Pseudomonas aeruginosa infection. Antibiot Chemother (1971) 1991;44:196–202. doi: 10.1159/000420314. [DOI] [PubMed] [Google Scholar]
  29. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  30. Nelson S., Bagby G. J., Summer W. R. Alcohol-induced suppression of tumor necrosis factor--a potential risk factor for secondary infection in the acquired immunodeficiency syndrome. Prog Clin Biol Res. 1990;325:211–220. [PubMed] [Google Scholar]
  31. Pendino K. J., Laskin J. D., Shuler R. L., Punjabi C. J., Laskin D. L. Enhanced production of nitric oxide by rat alveolar macrophages after inhalation of a pulmonary irritant is associated with increased expression of nitric oxide synthase. J Immunol. 1993 Dec 15;151(12):7196–7205. [PubMed] [Google Scholar]
  32. Pesanti E. L. Interaction of cytokines and alveolar cells with Pneumocystis carinii in vitro. J Infect Dis. 1991 Mar;163(3):611–616. doi: 10.1093/infdis/163.3.611. [DOI] [PubMed] [Google Scholar]
  33. Piguet P. F., Collart M. A., Grau G. E., Sappino A. P., Vassalli P. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature. 1990 Mar 15;344(6263):245–247. doi: 10.1038/344245a0. [DOI] [PubMed] [Google Scholar]
  34. Prokhorova S., Lavnikova N., Laskin D. L. Functional characterization of interstitial macrophages and subpopulations of alveolar macrophages from rat lung. J Leukoc Biol. 1994 Feb;55(2):141–146. doi: 10.1002/jlb.55.2.141. [DOI] [PubMed] [Google Scholar]
  35. Remick D. G. Lung and gut injury induced by tumour necrosis factor. Res Immunol. 1993 Jun;144(5):326–331. doi: 10.1016/s0923-2494(93)80075-a. [DOI] [PubMed] [Google Scholar]
  36. Santis G., Osborne L., Knight R. A., Hodson M. E. Linked marker haplotypes and the delta F508 mutation in adults with mild pulmonary disease and cystic fibrosis. Lancet. 1990 Jun 16;335(8703):1426–1429. doi: 10.1016/0140-6736(90)91448-j. [DOI] [PubMed] [Google Scholar]
  37. Santis G., Osborne L., Knight R., Hodson M. E., Ramsay M. Genetic influences on pulmonary severity in cystic fibrosis. Lancet. 1990 Feb 3;335(8684):294–294. doi: 10.1016/0140-6736(90)90114-k. [DOI] [PubMed] [Google Scholar]
  38. Sheehan K. C., Ruddle N. H., Schreiber R. D. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J Immunol. 1989 Jun 1;142(11):3884–3893. [PubMed] [Google Scholar]
  39. Smart S. J., Casale T. B. Pulmonary epithelial cells facilitate TNF-alpha-induced neutrophil chemotaxis. A role for cytokine networking. J Immunol. 1994 Apr 15;152(8):4087–4094. [PubMed] [Google Scholar]
  40. Smith J. G., Magee D. M., Williams D. M., Graybill J. R. Tumor necrosis factor-alpha plays a role in host defense against Histoplasma capsulatum. J Infect Dis. 1990 Dec;162(6):1349–1353. doi: 10.1093/infdis/162.6.1349. [DOI] [PubMed] [Google Scholar]
  41. Sordelli D. O., Djafari M., García V. E., Fontán P. A., Döring G. Age-dependent pulmonary clearance of Pseudomonas aeruginosa in a mouse model: diminished migration of polymorphonuclear leukocytes to N-formyl-methionyl-leucyl-phenylalanine. Infect Immun. 1992 Apr;60(4):1724–1727. doi: 10.1128/iai.60.4.1724-1727.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tosi M. F., Stark J. M., Smith C. W., Hamedani A., Gruenert D. C., Infeld M. D. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol. 1992 Aug;7(2):214–221. doi: 10.1165/ajrcmb/7.2.214. [DOI] [PubMed] [Google Scholar]
  43. Tracey K. J., Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503. doi: 10.1146/annurev.med.45.1.491. [DOI] [PubMed] [Google Scholar]
  44. Vacheron F., Rudent A., Perin S., Labarre C., Quero A. M., Guenounou M. Production of interleukin 1 and tumour necrosis factor activities in bronchoalveolar washings following infection of mice by influenza virus. J Gen Virol. 1990 Feb;71(Pt 2):477–479. doi: 10.1099/0022-1317-71-2-477. [DOI] [PubMed] [Google Scholar]
  45. Vincendeau P., Daulouède S. Macrophage cytostatic effect on Trypanosoma musculi involves an L-arginine-dependent mechanism. J Immunol. 1991 Jun 15;146(12):4338–4343. [PubMed] [Google Scholar]
  46. van Furth R., van Zwet T. L., Buisman A. M., van Dissel J. T. Anti-tumor necrosis factor antibodies inhibit the influx of granulocytes and monocytes into an inflammatory exudate and enhance the growth of Listeria monocytogenes in various organs. J Infect Dis. 1994 Jul;170(1):234–237. doi: 10.1093/infdis/170.1.234. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES