Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Apr;37(4):281–286. doi: 10.1136/jmg.37.4.281

Parental origin and mechanisms of formation of cytogenetically recognisable de novo direct and inverted duplications

D Kotzot 1, M Martinez 1, G Bagci 1, S Basaran 1, A Baumer 1, F Binkert 1, L Brecevic 1, C Castellan 1, K Chrzanowska 1, F Dutly 1, A Gutkowska 1, S B Karauzum 1, M Krajewska-Walasek 1, G Luleci 1, P Miny 1, M Riegel 1, S Schuffenhauer 1, H Seidel 1, A Schinzel 1
PMCID: PMC1734569  PMID: 10745046

Abstract

Cytogenetic, FISH, and molecular results of 20 cases with de novo tandem duplications of 18 different autosomal chromosome segments are reported. There were 12 cases with direct duplications, three cases with inverted duplications, and five in whom determination of direction was not possible. In seven cases a rearrangement between non-sister chromatids (N-SCR) was found, whereas in the remaining 13 cases sister chromatids (SCR) were involved. Paternal and maternal origin (7:7) was found almost equally in cases with SCR (3:4) and N-SCR (4:3). In the cases with proven inversion, there was maternal and paternal origin in one case each. Twenty three out of 43 cytogenetically determined breakpoints correlated with common or rare fragile sites. In five cases, including all those with proven inverse orientation, all breakpoints corresponded to common or rare fragile sites. In at least two cases, one with an interstitial duplication (dup(19)(q11q13)) and one with a terminal duplication (dup(8) (p10p23)), concomitant deletions (del(8) (p23p23.3) and del(19)(q13q13)) were found.


Keywords: direct duplication; inverted duplication; parental origin; tandem duplication

Full Text

The Full Text of this article is available as a PDF (130.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A complete set of human telomeric probes and their clinical application. National Institutes of Health and Institute of Molecular Medicine collaboration. Nat Genet. 1996 Sep;14(1):86–89. doi: 10.1038/ng0996-86. [DOI] [PubMed] [Google Scholar]
  2. Arthur E. I., Zlotogora J., Lerer I., Dagan J., Marks K., Abeliovich D. Transient neonatal diabetes mellitus in a child with invdup(6)(q22q23) of paternal origin. Eur J Hum Genet. 1997 Nov-Dec;5(6):417–419. [PubMed] [Google Scholar]
  3. Baumer A., Dutly F., Balmer D., Riegel M., Tükel T., Krajewska-Walasek M., Schinzel A. A. High level of unequal meiotic crossovers at the origin of the 22q11. 2 and 7q11.23 deletions. Hum Mol Genet. 1998 May;7(5):887–894. doi: 10.1093/hmg/7.5.887. [DOI] [PubMed] [Google Scholar]
  4. Blouin J. L., Aurias A., Créau-Goldberg N., Apiou F., Alcaide-Loridan C., Bruel A., Prieur M., Kraus J., Delabar J. M., Sinet P. M. Cytogenetic and molecular analysis of a de novo tandem duplication of chromosome 21. Hum Genet. 1991 Dec;88(2):167–174. doi: 10.1007/BF00206066. [DOI] [PubMed] [Google Scholar]
  5. Breslau-Siderius E. J., Wijnen J. T., Dauwerse J. G., de Pater J. M., Beemer F. A., Khan P. M. Paternal duplication of chromosome 5q11.2-5q14 in a male born with craniostenosis, ear tags, kidney dysplasia and several other anomalies. Hum Genet. 1993 Nov;92(5):481–485. doi: 10.1007/BF00216455. [DOI] [PubMed] [Google Scholar]
  6. Cotter P. D., McCurdy L. D., Gershin I. F., Babu A., Willner J. P., Desnick R. J. Prenatal detection and molecular characterization of a de novo duplication of the distal long arm of chromosome 19. Am J Med Genet. 1997 Aug 22;71(3):325–328. doi: 10.1002/(sici)1096-8628(19970822)71:3<325::aid-ajmg13>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  7. Dutly F., Baumer A., Kayserili H., Yüksel-Apak M., Zerova T., Hebisch G., Schinzel A. Seven cases of Wiedmann-Beckwith syndrome, including the first reported case of mosaic paternal isodisomy along the whole chromosome 11. Am J Med Genet. 1998 Oct 12;79(5):347–353. doi: 10.1002/(sici)1096-8628(19981012)79:5<347::aid-ajmg4>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  8. Floridia G., Piantanida M., Minelli A., Dellavecchia C., Bonaglia C., Rossi E., Gimelli G., Croci G., Franchi F., Gilgenkrantz S. The same molecular mechanism at the maternal meiosis I produces mono- and dicentric 8p duplications. Am J Hum Genet. 1996 Apr;58(4):785–796. [PMC free article] [PubMed] [Google Scholar]
  9. Reiter L. T., Hastings P. J., Nelis E., De Jonghe P., Van Broeckhoven C., Lupski J. R. Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am J Hum Genet. 1998 May;62(5):1023–1033. doi: 10.1086/301827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Simonic I., Gericke G. S. The enigma of common fragile sites. Hum Genet. 1996 Apr;97(4):524–531. doi: 10.1007/BF02267080. [DOI] [PubMed] [Google Scholar]
  11. Smith A., Jauch A., Slater H., Robson L., Sandanam T. Syndromal obesity due to paternal duplication 6(q24.3-q27). Am J Med Genet. 1999 May 21;84(2):125–131. doi: 10.1002/(sici)1096-8628(19990521)84:2<125::aid-ajmg8>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  12. Stetten G., Charity L. L., Kasch L. M., Scott A. F., Berman C. L., Pressman E., Blakemore K. J. A paternally derived inverted duplication of 7q with evidence of a telomeric deletion. Am J Med Genet. 1997 Jan 10;68(1):76–81. [PubMed] [Google Scholar]
  13. Trautmann U., Pfeiffer R. A., Seufert-Satomi U., Tietze H. U. Simultaneous de novo interstitial deletion of 16q21 and intercalary duplication of 19q in a retarded infant with minor dysmorphic features. J Med Genet. 1993 Apr;30(4):330–331. doi: 10.1136/jmg.30.4.330. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES