Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Jun;37(6):422–427. doi: 10.1136/jmg.37.6.422

Molecular characterisation of congenital glaucoma in a consanguineous Canadian community: a step towards preventing glaucoma related blindness

S Martin 1, J Sutherland 1, A Levin 1, R Klose 1, M Priston 1, E Heon 1
PMCID: PMC1734606  PMID: 10851252

Abstract

Glaucoma is a leading cause of irreversible blindness in Canada. Congenital glaucoma usually manifests during the first years of life and is characterised by severe visual loss and autosomal recessive inheritance. Two disease loci, on chromosomes 1p36 and 2p21, have been associated with various forms of congenital glaucoma. A branch of a large six generation family from a consanguineous Amish community in south western Ontario was affected with congenital glaucoma and was studied by linkage and mutational analysis to identify the glaucoma related genetic defects. Linkage analysis using the MLINK component of the LINKAGE package (v 5.1) showed evidence of linkage to the 2p21 region (Zmax=3.34, θ=0, D2S1348 and D2S1346). Mutational analysis of the primary candidate gene, CYP1B1, was done by direct cycle sequencing, dideoxy fingerprinting analysis, and fragment analysis. Two different disease causing mutations in exon 3, 1410del13 and 1505G→A, both segregated with the disease phenotype. The two different combinations of these alleles appeared to result in a variable expressivity of the phenotype. The compound heterozygote appeared to have a milder phenotype when compared to the homozygotes for the 13 bp deletion. The congenital glaucoma phenotype for this large inbred Amish family is the result of mutations in CYP1B1 (2p21). The molecular information derived from this study will be used to help identify carriers of the CYP1B1 mutation in this community and optimise the management of those at risk of developing glaucoma.


Keywords: congenital glaucoma; CYP1B1; gene; genetic counselling

Full Text

The Full Text of this article is available as a PDF (154.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akarsu A. N., Turacli M. E., Aktan S. G., Barsoum-Homsy M., Chevrette L., Sayli B. S., Sarfarazi M. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996 Aug;5(8):1199–1203. doi: 10.1093/hmg/5.8.1199. [DOI] [PubMed] [Google Scholar]
  2. Bejjani B. A., Lewis R. A., Tomey K. F., Anderson K. L., Dueker D. K., Jabak M., Astle W. F., Otterud B., Leppert M., Lupski J. R. Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am J Hum Genet. 1998 Feb;62(2):325–333. doi: 10.1086/301725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. François J. Congenital glaucoma and its inheritance. Ophthalmologica. 1980;181(2):61–73. doi: 10.1159/000309028. [DOI] [PubMed] [Google Scholar]
  4. Friedman J. S., Walter M. A. Glaucoma genetics, present and future. Clin Genet. 1999 Feb;55(2):71–79. doi: 10.1034/j.1399-0004.1999.550201.x. [DOI] [PubMed] [Google Scholar]
  5. Gencik A., Gencikova A., Ferák V. Population genetical aspects of primary congenital glaucoma. I. Incidence, prevalence, gene frequency, and age of onset. Hum Genet. 1982;61(3):193–197. doi: 10.1007/BF00296440. [DOI] [PubMed] [Google Scholar]
  6. Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
  7. Graham-Lorence S. E., Peterson J. A. Structural alignments of P450s and extrapolations to the unknown. Methods Enzymol. 1996;272:315–326. doi: 10.1016/s0076-6879(96)72037-2. [DOI] [PubMed] [Google Scholar]
  8. Héon E., Liu S., Billingsley G., Bernasconi O., Tsilfidis C., Schorderet D. F., Munier F. L., Tsifildis C. Gene localization for aculeiform cataract, on chromosome 2q33-35. Am J Hum Genet. 1998 Sep;63(3):921–926. doi: 10.1086/302005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Héon E., Priston M., Schorderet D. F., Billingsley G. D., Girard P. O., Lubsen N., Munier F. L. The gamma-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet. 1999 Nov;65(5):1261–1267. doi: 10.1086/302619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jerndal T. Congenital glaucoma due to dominant goniodysgenesis. A new concept of the heredity of glaucoma. Am J Hum Genet. 1983 Jul;35(4):645–651. [PMC free article] [PubMed] [Google Scholar]
  11. Mears A. J., Mirzayans F., Gould D. B., Pearce W. G., Walter M. A. Autosomal dominant iridogoniodysgenesis anomaly maps to 6p25. Am J Hum Genet. 1996 Dec;59(6):1321–1327. [PMC free article] [PubMed] [Google Scholar]
  12. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nishimura D. Y., Swiderski R. E., Alward W. L., Searby C. C., Patil S. R., Bennet S. R., Kanis A. B., Gastier J. M., Stone E. M., Sheffield V. C. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet. 1998 Jun;19(2):140–147. doi: 10.1038/493. [DOI] [PubMed] [Google Scholar]
  14. Phillips J. C., del Bono E. A., Haines J. L., Pralea A. M., Cohen J. S., Greff L. J., Wiggs J. L. A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet. 1996 Sep;59(3):613–619. [PMC free article] [PubMed] [Google Scholar]
  15. Plásilová M., Feráková E., Kádasi L., Poláková H., Gerinec A., Ott J., Ferák V. Linkage of autosomal recessive primary congenital glaucoma to the GLC3A locus in Roms (Gypsies) from Slovakia. Hum Hered. 1998 Jan-Feb;48(1):30–33. doi: 10.1159/000022778. [DOI] [PubMed] [Google Scholar]
  16. Sarfarazi M. Recent advances in molecular genetics of glaucomas. Hum Mol Genet. 1997;6(10):1667–1677. doi: 10.1093/hmg/6.10.1667. [DOI] [PubMed] [Google Scholar]
  17. Semina E. V., Reiter R., Leysens N. J., Alward W. L., Small K. W., Datson N. A., Siegel-Bartelt J., Bierke-Nelson D., Bitoun P., Zabel B. U. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet. 1996 Dec;14(4):392–399. doi: 10.1038/ng1296-392. [DOI] [PubMed] [Google Scholar]
  18. Shields M. B., Buckley E., Klintworth G. K., Thresher R. Axenfeld-Rieger syndrome. A spectrum of developmental disorders. Surv Ophthalmol. 1985 May-Jun;29(6):387–409. doi: 10.1016/0039-6257(85)90205-x. [DOI] [PubMed] [Google Scholar]
  19. Stoilov I., Akarsu A. N., Alozie I., Child A., Barsoum-Homsy M., Turacli M. E., Or M., Lewis R. A., Ozdemir N., Brice G. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet. 1998 Mar;62(3):573–584. doi: 10.1086/301764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stoilov I., Akarsu A. N., Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997 Apr;6(4):641–647. doi: 10.1093/hmg/6.4.641. [DOI] [PubMed] [Google Scholar]
  21. Sutter T. R., Tang Y. M., Hayes C. L., Wo Y. Y., Jabs E. W., Li X., Yin H., Cody C. W., Greenlee W. F. Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem. 1994 May 6;269(18):13092–13099. [PubMed] [Google Scholar]
  22. deLuise V. P., Anderson D. R. Primary infantile glaucoma (congenital glaucoma). Surv Ophthalmol. 1983 Jul-Aug;28(1):1–19. doi: 10.1016/0039-6257(83)90174-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES