Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3381–3387. doi: 10.1128/iai.63.9.3381-3387.1995

Susceptibility of beige mice to Mycobacterium avium: role of neutrophils.

R Appelberg 1, A G Castro 1, S Gomes 1, J Pedrosa 1, M T Silva 1
PMCID: PMC173465  PMID: 7642266

Abstract

The beige mutation in C57BL/6 mice has been shown to increase the susceptibility to infection by Mycobacterium avium. In this study, we confirmed those results and showed that the effect of the beige mutation was most obvious after infection with a strain of lower virulence than with a highly virulent isolate of M. avium. The dissemination of M. avium from the gut was observed with both C57BL/6 and beige mice but was faster in the latter. The expression of gamma interferon (IFN-gamma) and the priming for tumor necrosis factor production during an in vivo infection were similar between beige and immunocompetent C57BL/6 mice. IFN-gamma produced during the infection of beige mice was protective in the spleen, and the administration of recombinant IFN-gamma restored the resistance in the spleen to levels similar to those found in control mice. There were no histological differences between wild-type and beige mice with respect to granuloma formation in the liver. The increased susceptibility of beige mice to M. avium as manifested in the liver was reduced by transfusing neutrophils from wild-type C57BL/6 mice. Likewise, depletion of neutrophils from C57BL/6 mice rendered them as susceptible to M. avium infection of the liver as beige mice. Our results point to the participation of neutrophils in the defect of beige mice in addition to other defects. Furthermore, these results show that neutrophils play a significant role in the defense mechanisms against mycobacterial infections and that beige animals may be a useful model for study of the role of neutrophils in mycobacteriosis.

Full Text

The Full Text of this article is available as a PDF (848.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelberg R., Castro A. G., Pedrosa J., Silva R. A., Orme I. M., Minóprio P. Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection. Infect Immun. 1994 Sep;62(9):3962–3971. doi: 10.1128/iai.62.9.3962-3971.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appelberg R., Castro A. G., Silva M. T. Neutrophils as effector cells of T-cell-mediated, acquired immunity in murine listeriosis. Immunology. 1994 Oct;83(2):302–307. [PMC free article] [PubMed] [Google Scholar]
  3. Appelberg R. Interferon-gamma (IFN-gamma) and macrophage inflammatory proteins (MIP)-1 and -2 are involved in the regulation of the T cell-dependent chronic peritoneal neutrophilia of mice infected with mycobacteria. Clin Exp Immunol. 1992 Aug;89(2):269–273. doi: 10.1111/j.1365-2249.1992.tb06943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Appelberg R. Mycobacterial infection primes T cells and macrophages for enhanced recruitment of neutrophils. J Leukoc Biol. 1992 May;51(5):472–477. doi: 10.1002/jlb.51.5.472. [DOI] [PubMed] [Google Scholar]
  5. Appelberg R., Pedrosa J. Induction and expression of protective T cells during Mycobacterium avium infections in mice. Clin Exp Immunol. 1992 Mar;87(3):379–385. doi: 10.1111/j.1365-2249.1992.tb03006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Appelberg R., Silva M. T. T cell-dependent chronic neutrophilia during mycobacterial infections. Clin Exp Immunol. 1989 Dec;78(3):478–483. [PMC free article] [PubMed] [Google Scholar]
  7. Appelberg R. T cell regulation of the chronic peritoneal neutrophilia during mycobacterial infections. Clin Exp Immunol. 1992 Jul;89(1):120–125. doi: 10.1111/j.1365-2249.1992.tb06889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baca M. E., Mowat A. M. Immunological studies of NK cell-deficient beige mice. I. Defective ability of beige lymphocytes to mediate local and systemic graft-versus-host reactions. Immunology. 1989 Jan;66(1):125–130. [PMC free article] [PubMed] [Google Scholar]
  9. Baca M. E., Mowat A. M., Parrott D. M. Immunological studies of NK cell-deficient beige mice. II. Analysis of T-lymphocyte functions in beige mice. Immunology. 1989 Jan;66(1):131–137. [PMC free article] [PubMed] [Google Scholar]
  10. Beck B. N., Henney C. S. An analysis of the natural killer cell defect in beige mice. Cell Immunol. 1981 Jul 1;61(2):343–352. doi: 10.1016/0008-8749(81)90382-8. [DOI] [PubMed] [Google Scholar]
  11. Bermudez L. E., Kolonoski P., Young L. S. Natural killer cell activity and macrophage-dependent inhibition of growth or killing of Mycobacterium avium complex in a mouse model. J Leukoc Biol. 1990 Feb;47(2):135–141. doi: 10.1002/jlb.47.2.135. [DOI] [PubMed] [Google Scholar]
  12. Bermudez L. E., Petrofsky M., Kolonoski P., Young L. S. An animal model of Mycobacterium avium complex disseminated infection after colonization of the intestinal tract. J Infect Dis. 1992 Jan;165(1):75–79. doi: 10.1093/infdis/165.1.75. [DOI] [PubMed] [Google Scholar]
  13. Bermudez L. E., Young L. S. Natural killer cell-dependent mycobacteriostatic and mycobactericidal activity in human macrophages. J Immunol. 1991 Jan 1;146(1):265–270. [PubMed] [Google Scholar]
  14. Blanchard D. K., Michelini-Norris M. B., Pearson C. A., McMillen S., Djeu J. Y. Production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by monocytes and large granular lymphocytes stimulated with Mycobacterium avium-M. intracellulare: activation of bactericidal activity by GM-CSF. Infect Immun. 1991 Jul;59(7):2396–2402. doi: 10.1128/iai.59.7.2396-2402.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Conlan J. W., North R. J. Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J Exp Med. 1994 Jan 1;179(1):259–268. doi: 10.1084/jem.179.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Czuprynski C. J., Brown J. F., Maroushek N., Wagner R. D., Steinberg H. Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J Immunol. 1994 Feb 15;152(4):1836–1846. [PubMed] [Google Scholar]
  17. Gallin J. I., Bujak J. S., Patten E., Wolff S. M. Granulocyte function in the Chediak-Higashi syndrome of mice. Blood. 1974 Feb;43(2):201–206. [PubMed] [Google Scholar]
  18. Gangadharam P. R., Edwards C. K., 3rd, Murthy P. S., Pratt P. F. An acute infection model for Mycobacterium intracellulare disease using beige mice: preliminary results. Am Rev Respir Dis. 1983 May;127(5):648–649. doi: 10.1164/arrd.1983.127.5.648. [DOI] [PubMed] [Google Scholar]
  19. Gangadharam P. R., Perumal V. K., Farhi D. C., LaBrecque J. The beige mouse model for Mycobacterium avium complex (MAC) disease: optimal conditions for the host and parasite. Tubercle. 1989 Dec;70(4):257–271. doi: 10.1016/0041-3879(89)90020-2. [DOI] [PubMed] [Google Scholar]
  20. Harshan K. V., Gangadharam P. R. In vivo depletion of natural killer cell activity leads to enhanced multiplication of Mycobacterium avium complex in mice. Infect Immun. 1991 Aug;59(8):2818–2821. doi: 10.1128/iai.59.8.2818-2821.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hestdal K., Ruscetti F. W., Ihle J. N., Jacobsen S. E., Dubois C. M., Kopp W. C., Longo D. L., Keller J. R. Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J Immunol. 1991 Jul 1;147(1):22–28. [PubMed] [Google Scholar]
  22. Inderlied C. B., Kemper C. A., Bermudez L. E. The Mycobacterium avium complex. Clin Microbiol Rev. 1993 Jul;6(3):266–310. doi: 10.1128/cmr.6.3.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kawase I., Brooks C. G., Kuribayashi K., Olabuenaga S., Newman W., Gillis S., Henney C. S. Interleukin 2 induces gamma-interferon production: participation of macrophages and NK-like cells. J Immunol. 1983 Jul;131(1):288–292. [PubMed] [Google Scholar]
  24. Molloy A., Meyn P. A., Smith K. D., Kaplan G. Recognition and destruction of Bacillus Calmette-Guerin-infected human monocytes. J Exp Med. 1993 Jun 1;177(6):1691–1698. doi: 10.1084/jem.177.6.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oliver C., Essner E. Formation of anomalous lysosomes in monocytes, neutrophils, and eosinophils from bone marrow of mice with Chédiak-Higashi syndrome. Lab Invest. 1975 Jan;32(1):17–27. [PubMed] [Google Scholar]
  26. Orme I. M., Furney S. K., Roberts A. D. Dissemination of enteric Mycobacterium avium infections in mice rendered immunodeficient by thymectomy and CD4 depletion or by prior infection with murine AIDS retroviruses. Infect Immun. 1992 Nov;60(11):4747–4753. doi: 10.1128/iai.60.11.4747-4753.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orn A., Håkansson E. M., Gidlund M., Ramstedt U., Axberg I., Wigzell H., Lundin L. G. Pigment mutations in the mouse which also affect lysosomal functions lead to suppressed natural killer cell activity. Scand J Immunol. 1982 Mar;15(3):305–310. doi: 10.1111/j.1365-3083.1982.tb00653.x. [DOI] [PubMed] [Google Scholar]
  28. Roder J. C., Lohmann-Matthes M. L., Domzig W., Wigzell H. The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J Immunol. 1979 Nov;123(5):2174–2181. [PubMed] [Google Scholar]
  29. Roder J., Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature. 1979 Mar 29;278(5703):451–453. doi: 10.1038/278451a0. [DOI] [PubMed] [Google Scholar]
  30. Rogers H. W., Unanue E. R. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect Immun. 1993 Dec;61(12):5090–5096. doi: 10.1128/iai.61.12.5090-5096.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saxena R. K., Saxena Q. B., Adler W. H. Defective T-cell response in beige mutant mice. Nature. 1982 Jan 21;295(5846):240–241. doi: 10.1038/295240a0. [DOI] [PubMed] [Google Scholar]
  32. Silva M. T., Silva M. N., Appelberg R. Neutrophil-macrophage cooperation in the host defence against mycobacterial infections. Microb Pathog. 1989 May;6(5):369–380. doi: 10.1016/0882-4010(89)90079-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES