Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Aug;37(8):572–578. doi: 10.1136/jmg.37.8.572

RET genotypes comprising specific haplotypes of polymorphic variants predispose to isolated Hirschsprung disease

S Borrego 1, A Ruiz 1, M E Saez 1, O Gimm 1, X Gao 1, M Lopez-Alonso 1, A Hernandez 1, F Wright 1, G Antinolo 1, C Eng 1
PMCID: PMC1734658  PMID: 10922382

Abstract

BACKGROUND—Hirschsprung disease (HSCR), which may be sporadic or familial, occurs in 1:5000 live births and presents with functional intestinal obstruction secondary to aganglionosis of the hindgut. Germline mutations of the RET proto-oncogene are believed to account for up to 50% of familial cases and up to 30% of isolated cases in most series. However, these series are highly selected for the most obvious and severe cases and large familial aggregations. Population based studies indicate that germline RET mutations account for no more than 3% of isolated HSCR cases. Recently, we and others have noted that specific polymorphic sequence variants, notably A45A (exon 2), are over-represented in isolated HSCR.
PURPOSE—In order to determine if it is the variant per se, a combination thereof, or another locus in linkage disequilibrium which predisposes to HSCR, we looked for association of RET haplotype(s) and disease in HSCR cases compared to region matched controls.
METHODS—Seven loci across RET were typed and haplotypes formed for HSCR cases, their unaffected parents, and region matched controls. Haplotype and genotype frequencies and distributions were compared among these groups using the transmission disequilibrium test and standard case-control statistic.
RESULTS—Twelve unique haplotypes, labelled A-L, were obtained. The distributions of haplotypes between cases and controls (χ112 =81.4, p<<0.0001) and between cases and non-transmitted parental haplotypes were significantly different (χ211=53.1, p<0.0001). Genotypes comprising pairs of haplotypes were formed for cases and controls. There were 38 different genotypes among cases and controls combined. Inspection of the genotypes in these two groups showed that the genotype distribution between cases and controls was distinct (χ372=93.8, p<<0.0001). For example, BB, BC, BD, and CD, all of which contain at least one allele with the polymorphic A45A, are prominently represented among HSCR cases, together accounting for >35% of the case genotypes, yet these four genotypes were not represented among the population matched normal controls. Conversely, AA, AG, DD, GG, and GJ, none of which contains A45A, are commonly represented in the controls, together accounting for 43% of the control genotypes, and yet they are never seen among the HSCR cases.
CONCLUSIONS—Our data suggest that genotypes comprising specific pairs of RET haplotypes are associated with predisposition to HSCR either in a simple autosomal recessive manner or in an additive, dose dependent fashion.


Keywords: transmission disequilibrium test; chromosome 10; polymorphisms

Full Text

The Full Text of this article is available as a PDF (166.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amiel J., Attié T., Jan D., Pelet A., Edery P., Bidaud C., Lacombe D., Tam P., Simeoni J., Flori E. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet. 1996 Mar;5(3):355–357. doi: 10.1093/hmg/5.3.355. [DOI] [PubMed] [Google Scholar]
  2. Angrist M., Bolk S., Halushka M., Lapchak P. A., Chakravarti A. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet. 1996 Nov;14(3):341–344. doi: 10.1038/ng1196-341. [DOI] [PubMed] [Google Scholar]
  3. Angrist M., Bolk S., Thiel B., Puffenberger E. G., Hofstra R. M., Buys C. H., Cass D. T., Chakravarti A. Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet. 1995 May;4(5):821–830. doi: 10.1093/hmg/4.5.821. [DOI] [PubMed] [Google Scholar]
  4. Attié T., Pelet A., Edery P., Eng C., Mulligan L. M., Amiel J., Boutrand L., Beldjord C., Nihoul-Fékété C., Munnich A. Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet. 1995 Aug;4(8):1381–1386. doi: 10.1093/hmg/4.8.1381. [DOI] [PubMed] [Google Scholar]
  5. Auricchio A., Casari G., Staiano A., Ballabio A. Endothelin-B receptor mutations in patients with isolated Hirschsprung disease from a non-inbred population. Hum Mol Genet. 1996 Mar;5(3):351–354. doi: 10.1093/hmg/5.3.351. [DOI] [PubMed] [Google Scholar]
  6. Badner J. A., Sieber W. K., Garver K. L., Chakravarti A. A genetic study of Hirschsprung disease. Am J Hum Genet. 1990 Mar;46(3):568–580. [PMC free article] [PubMed] [Google Scholar]
  7. Bidaud C., Salomon R., Van Camp G., Pelet A., Attié T., Eng C., Bonduelle M., Amiel J., Nihoul-Fékété C., Willems P. J. Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet. 1997 Jul-Aug;5(4):247–251. [PubMed] [Google Scholar]
  8. Bolk S., Pelet A., Hofstra R. M., Angrist M., Salomon R., Croaker D., Buys C. H., Lyonnet S., Chakravarti A. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):268–273. doi: 10.1073/pnas.97.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Borrego S., Eng C., Sánchez B., Sáez M. E., Navarro E., Antiñolo G. Molecular analysis of the ret and GDNF genes in a family with multiple endocrine neoplasia type 2A and Hirschsprung disease. J Clin Endocrinol Metab. 1998 Sep;83(9):3361–3364. doi: 10.1210/jcem.83.9.5093. [DOI] [PubMed] [Google Scholar]
  10. Borrego S., Sáez M. E., Ruiz A., Gimm O., López-Alonso M., Antiñolo G., Eng C. Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression. J Med Genet. 1999 Oct;36(10):771–774. doi: 10.1136/jmg.36.10.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ceccherini I., Hofstra R. M., Luo Y., Stulp R. P., Barone V., Stelwagen T., Bocciardi R., Nijveen H., Bolino A., Seri M. DNA polymorphisms and conditions for SSCP analysis of the 20 exons of the ret proto-oncogene. Oncogene. 1994 Oct;9(10):3025–3029. [PubMed] [Google Scholar]
  12. Chakravarti A. Endothelin receptor-mediated signaling in hirschsprung disease. Hum Mol Genet. 1996 Mar;5(3):303–307. [PubMed] [Google Scholar]
  13. Edery P., Attié T., Amiel J., Pelet A., Eng C., Hofstra R. M., Martelli H., Bidaud C., Munnich A., Lyonnet S. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet. 1996 Apr;12(4):442–444. doi: 10.1038/ng0496-442. [DOI] [PubMed] [Google Scholar]
  14. Edery P., Lyonnet S., Mulligan L. M., Pelet A., Dow E., Abel L., Holder S., Nihoul-Fékété C., Ponder B. A., Munnich A. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):378–380. doi: 10.1038/367378a0. [DOI] [PubMed] [Google Scholar]
  15. Eng C., Clayton D., Schuffenecker I., Lenoir G., Cote G., Gagel R. F., van Amstel H. K., Lips C. J., Nishisho I., Takai S. I. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996 Nov 20;276(19):1575–1579. [PubMed] [Google Scholar]
  16. Eng C., Mulligan L. M. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and hirschsprung disease. Hum Mutat. 1997;9(2):97–109. doi: 10.1002/(SICI)1098-1004(1997)9:2<97::AID-HUMU1>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  17. Eng C. RET proto-oncogene in the development of human cancer. J Clin Oncol. 1999 Jan;17(1):380–393. doi: 10.1200/JCO.1999.17.1.380. [DOI] [PubMed] [Google Scholar]
  18. Eng C., Smith D. P., Mulligan L. M., Nagai M. A., Healey C. S., Ponder M. A., Gardner E., Scheumann G. F., Jackson C. E., Tunnacliffe A. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet. 1994 Feb;3(2):237–241. doi: 10.1093/hmg/3.2.237. [DOI] [PubMed] [Google Scholar]
  19. Falk C. T., Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet. 1987 Jul;51(Pt 3):227–233. doi: 10.1111/j.1469-1809.1987.tb00875.x. [DOI] [PubMed] [Google Scholar]
  20. Fitze G., Schreiber M., Kuhlisch E., Schackert H. K., Roesner D. Association of RET protooncogene codon 45 polymorphism with Hirschsprung disease. Am J Hum Genet. 1999 Nov;65(5):1469–1473. doi: 10.1086/302618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gimm O., Neuberg D. S., Marsh D. J., Dahia P. L., Hoang-Vu C., Raue F., Hinze R., Dralle H., Eng C. Over-representation of a germline RET sequence variant in patients with sporadic medullary thyroid carcinoma and somatic RET codon 918 mutation. Oncogene. 1999 Feb 11;18(6):1369–1373. doi: 10.1038/sj.onc.1202418. [DOI] [PubMed] [Google Scholar]
  22. Hofstra R. M., Osinga J., Tan-Sindhunata G., Wu Y., Kamsteeg E. J., Stulp R. P., van Ravenswaaij-Arts C., Majoor-Krakauer D., Angrist M., Chakravarti A. A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nat Genet. 1996 Apr;12(4):445–447. doi: 10.1038/ng0496-445. [DOI] [PubMed] [Google Scholar]
  23. Ivanchuk S. M., Myers S. M., Eng C., Mulligan L. M. De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet. 1996 Dec;5(12):2023–2026. doi: 10.1093/hmg/5.12.2023. [DOI] [PubMed] [Google Scholar]
  24. Kusafuka T., Wang Y., Puri P. Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung's disease. Hum Mol Genet. 1996 Mar;5(3):347–349. doi: 10.1093/hmg/5.3.347. [DOI] [PubMed] [Google Scholar]
  25. Lyonnet S., Bolino A., Pelet A., Abel L., Nihoul-Fékété C., Briard M. L., Mok-Siu V., Kaariainen H., Martucciello G., Lerone M. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet. 1993 Aug;4(4):346–350. doi: 10.1038/ng0893-346. [DOI] [PubMed] [Google Scholar]
  26. Mulligan L. M., Eng C., Attié T., Lyonnet S., Marsh D. J., Hyland V. J., Robinson B. G., Frilling A., Verellen-Dumoulin C., Safar A. Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum Mol Genet. 1994 Dec;3(12):2163–2167. doi: 10.1093/hmg/3.12.2163. [DOI] [PubMed] [Google Scholar]
  27. Nakamura T., Ishizaka Y., Nagao M., Hara M., Ishikawa T. Expression of the ret proto-oncogene product in human normal and neoplastic tissues of neural crest origin. J Pathol. 1994 Mar;172(3):255–260. doi: 10.1002/path.1711720305. [DOI] [PubMed] [Google Scholar]
  28. Passarge E. The genetics of Hirschsprung's disease. Evidence for heterogeneous etiology and a study of sixty-three families. N Engl J Med. 1967 Jan 19;276(3):138–143. doi: 10.1056/NEJM196701192760303. [DOI] [PubMed] [Google Scholar]
  29. Puffenberger E. G., Hosoda K., Washington S. S., Nakao K., deWit D., Yanagisawa M., Chakravart A. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell. 1994 Dec 30;79(7):1257–1266. doi: 10.1016/0092-8674(94)90016-7. [DOI] [PubMed] [Google Scholar]
  30. Puffenberger E. G., Kauffman E. R., Bolk S., Matise T. C., Washington S. S., Angrist M., Weissenbach J., Garver K. L., Mascari M., Ladda R. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet. 1994 Aug;3(8):1217–1225. doi: 10.1093/hmg/3.8.1217. [DOI] [PubMed] [Google Scholar]
  31. Romeo G., Ronchetto P., Luo Y., Barone V., Seri M., Ceccherini I., Pasini B., Bocciardi R., Lerone M., Käriäinen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):377–378. doi: 10.1038/367377a0. [DOI] [PubMed] [Google Scholar]
  32. Salomon R., Attié T., Pelet A., Bidaud C., Eng C., Amiel J., Sarnacki S., Goulet O., Ricour C., Nihoul-Fékété C. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet. 1996 Nov;14(3):345–347. doi: 10.1038/ng1196-345. [DOI] [PubMed] [Google Scholar]
  33. Sancandi M., Ceccherini I., Costa M., Fava M., Chen B., Wu Y., Hofstra R., Laurie T., Griffths M., Burge D. Incidence of RET mutations in patients with Hirschsprung's disease. J Pediatr Surg. 2000 Jan;35(1):139–143. doi: 10.1016/s0022-3468(00)80031-7. [DOI] [PubMed] [Google Scholar]
  34. Santoro M., Rosati R., Grieco M., Berlingieri M. T., D'Amato G. L., de Franciscis V., Fusco A. The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene. 1990 Oct;5(10):1595–1598. [PubMed] [Google Scholar]
  35. Spielman R. S., Ewens W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet. 1996 Nov;59(5):983–989. [PMC free article] [PubMed] [Google Scholar]
  36. Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Mar;52(3):506–516. [PMC free article] [PubMed] [Google Scholar]
  37. Svensson P. J., Molander M. L., Eng C., Anvret M., Nordenskjöld A. Low frequency of RET mutations in Hirschsprung disease in Sweden. Clin Genet. 1998 Jul;54(1):39–44. doi: 10.1111/j.1399-0004.1998.tb03691.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES