Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3388–3395. doi: 10.1128/iai.63.9.3388-3395.1995

Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis.

D Provenzano 1, J F Alderete 1
PMCID: PMC173466  PMID: 7642267

Abstract

Trichomonas vaginalis is a protozoan parasite that causes a widely distributed sexually transmitted disease (STD). Since immunoglobulin G (IgG) antibodies to specific trichomonad immunogens are found in serum and vaginal washes (VWs) from patients with trichomoniasis, a potential mechanism of immune evasion by this parasite might be the ability of T. vaginalis proteinases to degrade human immunoglobulins (Igs). Incubation of human IgG with lysates of T. vaginalis organisms resulted in time- and concentration-dependent degradation of the heavy chain. Secretory IgA was degraded similarly. Inhibitors of cysteine proteinases, when added to trichomonal lysates, abolished IgG and IgA degradation, while EDTA, a metalloproteinase inhibitor, did not. Substrate-gel electrophoresis with human IgG, IgM, or IgA copolymerized with acrylamide revealed several distinct cysteine proteinases in both lysates and culture supernatants from logarithmically growing parasites that degraded all classes of human antibodies. Trichomonal lysates and supernatants of numerous isolates tested all had Ig-degrading activity. Finally, proteolytic activity against IgG was detected in most (26 of 33; 78%) VWs from patients with trichomoniasis. In contrast, 18 of 28 (65%) VWs from women without trichomoniasis or from patients infected with other STDs had no detectable proteinases when tested in an identical manner. The other 10 of these 28 VWs (35%) had smaller amounts of detectable Ig-degrading proteinases. These differences in Ig-degrading proteinase activity between patients with and without trichomoniasis, regardless of coinfecting STDs, were statistically significant (P = 0.001). These results illustrate that T. vaginalis is capable of degrading human Igs.

Full Text

The Full Text of this article is available as a PDF (546.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderete J. F., Garza G. E. Soluble Trichomonas vaginalis antigens in cell-free culture supernatants. Mol Biochem Parasitol. 1984 Oct;13(2):147–158. doi: 10.1016/0166-6851(84)90109-9. [DOI] [PubMed] [Google Scholar]
  2. Alderete J. F., Kasmala L., Metcalfe E., Garza G. E. Phenotypic variation and diversity among Trichomonas vaginalis isolates and correlation of phenotype with trichomonal virulence determinants. Infect Immun. 1986 Aug;53(2):285–293. doi: 10.1128/iai.53.2.285-293.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alderete J. F., Kasmala L. Monoclonal antibody to a major glycoprotein immunogen mediates differential complement-independent lysis of Trichomonas vaginalis. Infect Immun. 1986 Sep;53(3):697–699. doi: 10.1128/iai.53.3.697-699.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alderete J. F., Newton E., Dennis C., Engbring J., Neale K. A. Vaginal antibody of patients with trichomoniasis is to a prominent surface immunogen of Trichomonas vaginalis. Genitourin Med. 1991 Jun;67(3):220–225. doi: 10.1136/sti.67.3.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alderete J. F., Newton E., Dennis C., Neale K. A. Antibody in sera of patients infected with Trichomonas vaginalis is to trichomonad proteinases. Genitourin Med. 1991 Aug;67(4):331–334. doi: 10.1136/sti.67.4.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alderete J. F., Newton E., Dennis C., Neale K. A. The vagina of women infected with Trichomonas vaginalis has numerous proteinases and antibody to trichomonad proteinases. Genitourin Med. 1991 Dec;67(6):469–474. doi: 10.1136/sti.67.6.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alderete J. F., Suprun-Brown L., Kasmala L., Smith J., Spence M. Heterogeneity of Trichomonas vaginalis and discrimination among trichomonal isolates and subpopulations with sera of patients and experimentally infected mice. Infect Immun. 1985 Sep;49(3):463–468. doi: 10.1128/iai.49.3.463-468.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Arroyo R., Alderete J. F. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun. 1989 Oct;57(10):2991–2997. doi: 10.1128/iai.57.10.2991-2997.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ashley R. L., Corey L., Dalessio J., Wilson P., Remington M., Barnum G., Trethewey P. Protein-specific cervical antibody responses to primary genital herpes simplex virus type 2 infections. J Infect Dis. 1994 Jul;170(1):20–26. doi: 10.1093/infdis/170.1.20. [DOI] [PubMed] [Google Scholar]
  10. Bouvet J. P., Bélec L., Pirès R., Pillot J. Immunoglobulin G antibodies in human vaginal secretions after parenteral vaccination. Infect Immun. 1994 Sep;62(9):3957–3961. doi: 10.1128/iai.62.9.3957-3961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bózner P., Demes P. Proteinases in Trichomonas vaginalis and Tritrichomonas mobilensis are not exclusively of cysteine type. Parasitology. 1991 Feb;102(Pt 1):113–115. doi: 10.1017/s0031182000060418. [DOI] [PubMed] [Google Scholar]
  12. Bózner P., Gombosová A., Valent M., Demes P., Alderete J. F. Proteinases of Trichomonas vaginalis: antibody response in patients with urogenital trichomoniasis. Parasitology. 1992 Dec;105(Pt 3):387–391. doi: 10.1017/s0031182000074552. [DOI] [PubMed] [Google Scholar]
  13. Cole M. F., Evans M., Fitzsimmons S., Johnson J., Pearce C., Sheridan M. J., Wientzen R., Bowden G. Pioneer oral streptococci produce immunoglobulin A1 protease. Infect Immun. 1994 Jun;62(6):2165–2168. doi: 10.1128/iai.62.6.2165-2168.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Coombs G. H., North M. J. An analysis of the proteinases of Trichomonas vaginalis by polyacrylamide gel electrophoresis. Parasitology. 1983 Feb;86(Pt 1):1–6. doi: 10.1017/s0031182000057103. [DOI] [PubMed] [Google Scholar]
  15. DIAMOND L. S. The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol. 1957 Aug;43(4):488–490. [PubMed] [Google Scholar]
  16. Dillner L., Fredriksson A., Persson E., Forslund O., Hansson B. G., Dillner J. Antibodies against papillomavirus antigens in cervical secretions from condyloma patients. J Clin Microbiol. 1993 Feb;31(2):192–197. doi: 10.1128/jcm.31.2.192-197.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garber G. E., Lemchuk-Favel L. T. Characterization and purification of extracellular proteases of Trichomonas vaginalis. Can J Microbiol. 1989 Oct;35(10):903–909. doi: 10.1139/m89-150. [DOI] [PubMed] [Google Scholar]
  18. Govers J., Girard J. P. Some immunological properties of human cervical and vaginal secretions. Gynecol Invest. 1972;3(5):184–194. doi: 10.1159/000301774. [DOI] [PubMed] [Google Scholar]
  19. Grenier D. Inactivation of human serum bactericidal activity by a trypsinlike protease isolated from Porphyromonas gingivalis. Infect Immun. 1992 May;60(5):1854–1857. doi: 10.1128/iai.60.5.1854-1857.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hardy P. H., Hardy J. B., Nell E. E., Graham D. A., Spence M. R., Rosenbaum R. C. Prevalence of six sexually transmitted disease agents among pregnant inner-city adolescents and pregnancy outcome. Lancet. 1984 Aug 11;2(8398):333–337. doi: 10.1016/s0140-6736(84)92698-9. [DOI] [PubMed] [Google Scholar]
  21. Heisterberg L., Branebjerg P. E., Bremmelgaard A., Scheibel J., Høj L. The role of vaginal secretory immunoglobulin A, Gardnerella vaginalis, anaerobes, and Chlamydia trachomatis in postabortal pelvic inflammatory disease. Acta Obstet Gynecol Scand. 1987;66(2):99–102. doi: 10.3109/00016348709083027. [DOI] [PubMed] [Google Scholar]
  22. Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
  23. Kelsall B. L., Ravdin J. I. Degradation of human IgA by Entamoeba histolytica. J Infect Dis. 1993 Nov;168(5):1319–1322. doi: 10.1093/infdis/168.5.1319. [DOI] [PubMed] [Google Scholar]
  24. Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett. 1991 Oct;30(2):201–205. doi: 10.1016/0165-2478(91)90026-7. [DOI] [PubMed] [Google Scholar]
  25. Khoshnan A., Alderete J. F. Multiple double-stranded RNA segments are associated with virus particles infecting Trichomonas vaginalis. J Virol. 1993 Dec;67(12):6950–6955. doi: 10.1128/jvi.67.12.6950-6955.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khoshnan A., Alderete J. F. Trichomonas vaginalis with a double-stranded RNA virus has upregulated levels of phenotypically variable immunogen mRNA. J Virol. 1994 Jun;68(6):4035–4038. doi: 10.1128/jvi.68.6.4035-4038.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krieger J. N., Wolner-Hanssen P., Stevens C., Holmes K. K. Characteristics of Trichomonas vaginalis isolates from women with and without colpitis macularis. J Infect Dis. 1990 Feb;161(2):307–311. doi: 10.1093/infdis/161.2.307. [DOI] [PubMed] [Google Scholar]
  28. Laga M., Manoka A., Kivuvu M., Malele B., Tuliza M., Nzila N., Goeman J., Behets F., Batter V., Alary M. Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS. 1993 Jan;7(1):95–102. doi: 10.1097/00002030-199301000-00015. [DOI] [PubMed] [Google Scholar]
  29. Lehker M. W., Alderete J. F. Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Mol Microbiol. 1992 Jan;6(1):123–132. doi: 10.1111/j.1365-2958.1992.tb00844.x. [DOI] [PubMed] [Google Scholar]
  30. Lehker M. W., Alderete J. F. Properties of Trichomonas vaginalis grown under chemostat controlled growth conditions. Genitourin Med. 1990 Jun;66(3):193–199. doi: 10.1136/sti.66.3.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lehker M. W., Arroyo R., Alderete J. F. The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. J Exp Med. 1991 Aug 1;174(2):311–318. doi: 10.1084/jem.174.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lockwood B. C., North M. J., Scott K. I., Bremner A. F., Coombs G. H. The use of a highly sensitive electrophoretic method to compare the proteinases of trichomonads. Mol Biochem Parasitol. 1987 May;24(1):89–95. doi: 10.1016/0166-6851(87)90119-8. [DOI] [PubMed] [Google Scholar]
  33. Loomes L. M., Senior B. W., Kerr M. A. A proteolytic enzyme secreted by Proteus mirabilis degrades immunoglobulins of the immunoglobulin A1 (IgA1), IgA2, and IgG isotypes. Infect Immun. 1990 Jun;58(6):1979–1985. doi: 10.1128/iai.58.6.1979-1985.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McCormack W. M., Rosner B., McComb D. E., Evrard J. R., Zinner S. H. Infection with Chlamydia trachomatis in female college students. Am J Epidemiol. 1985 Jan;121(1):107–115. doi: 10.1093/oxfordjournals.aje.a113971. [DOI] [PubMed] [Google Scholar]
  35. McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
  36. Minkoff H., Grunebaum A. N., Schwarz R. H., Feldman J., Cummings M., Crombleholme W., Clark L., Pringle G., McCormack W. M. Risk factors for prematurity and premature rupture of membranes: a prospective study of the vaginal flora in pregnancy. Am J Obstet Gynecol. 1984 Dec 15;150(8):965–972. doi: 10.1016/0002-9378(84)90392-2. [DOI] [PubMed] [Google Scholar]
  37. Neale K. A., Alderete J. F. Analysis of the proteinases of representative Trichomonas vaginalis isolates. Infect Immun. 1990 Jan;58(1):157–162. doi: 10.1128/iai.58.1.157-162.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. North M. J., Robertson C. D., Coombs G. H. The specificity of trichomonad cysteine proteinases analysed using fluorogenic substrates and specific inhibitors. Mol Biochem Parasitol. 1990 Mar;39(2):183–193. doi: 10.1016/0166-6851(90)90057-s. [DOI] [PubMed] [Google Scholar]
  39. O'Shea S., Cordery M., Barrett W. Y., Richman D. D., Bradbeer C., Banatvala J. E. HIV excretion patterns and specific antibody responses in body fluids. J Med Virol. 1990 Aug;31(4):291–296. doi: 10.1002/jmv.1890310409. [DOI] [PubMed] [Google Scholar]
  40. Persson E., Eneroth P., Jeansson S. Secretory IgA against herpes simplex virus in cervical secretions. Genitourin Med. 1988 Dec;64(6):373–377. doi: 10.1136/sti.64.6.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pouedras P., Andre P. M., Donnio P. Y., Avril J. L. Cleavage of immunoglobulin A1, A2 and G by proteases from clinical isolates of Pasteurella multocida. J Med Microbiol. 1992 Aug;37(2):128–132. doi: 10.1099/00222615-37-2-128. [DOI] [PubMed] [Google Scholar]
  42. Prins M., Hooykaas C., Coutinho R. A., van Doornum G. J., van den Hoek A. J. Incidence and risk factors for acquisition of sexually transmitted diseases in heterosexuals with multiple partners. Sex Transm Dis. 1994 Sep-Oct;21(5):258–267. doi: 10.1097/00007435-199409000-00003. [DOI] [PubMed] [Google Scholar]
  43. Prokesová L., Potuzníková B., Potempa J., Zikán J., Radl J., Hachová L., Baran K., Porwit-Bobr Z., John C. Cleavage of human immunoglobulins by serine proteinase from Staphylococcus aureus. Immunol Lett. 1992 Feb 15;31(3):259–265. doi: 10.1016/0165-2478(92)90124-7. [DOI] [PubMed] [Google Scholar]
  44. Read J. S., Klebanoff M. A. Sexual intercourse during pregnancy and preterm delivery: effects of vaginal microorganisms. The Vaginal Infections and Prematurity Study Group. Am J Obstet Gynecol. 1993 Feb;168(2):514–519. doi: 10.1016/0002-9378(93)90484-z. [DOI] [PubMed] [Google Scholar]
  45. Schumacher G. F., Kim M. H., Hosseinian A. H., Dupon C. Immunoglobulins, proteinase inhibitors, albumin, and lysozyme in human cervical mucus. I. Communication: hormonal profiles and cervical mucus changes--methods and results. Am J Obstet Gynecol. 1977 Nov 15;129(6):629–636. doi: 10.1016/0002-9378(77)90644-5. [DOI] [PubMed] [Google Scholar]
  46. Sharma P., Malla N., Gupta I., Ganguly N. K., Mahajan R. C. Anti-trichomonad IgA antibodies in trichomoniasis before and after treatment. Folia Microbiol (Praha) 1991;36(3):302–304. doi: 10.1007/BF02814365. [DOI] [PubMed] [Google Scholar]
  47. Talbot J. A., Nielsen K., Corbeil L. B. Cleavage of proteins of reproductive secretions by extracellular proteinases of Tritrichomonas foetus. Can J Microbiol. 1991 May;37(5):384–390. doi: 10.1139/m91-062. [DOI] [PubMed] [Google Scholar]
  48. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Usala S. J., Usala F. O., Haciski R., Holt J. A., Schumacher G. F. IgG and IgA content of vaginal fluid during the menstrual cycle. J Reprod Med. 1989 Apr;34(4):292–294. [PubMed] [Google Scholar]
  50. Vuylsteke B., Bastos R., Barreto J., Crucitti T., Folgosa E., Mondlane J., Dusauchoit T., Piot P., Laga M. High prevalence of sexually transmitted diseases in a rural area in Mozambique. Genitourin Med. 1993 Dec;69(6):427–430. doi: 10.1136/sti.69.6.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wang A. L., Wang C. C. Viruses of the protozoa. Annu Rev Microbiol. 1991;45:251–263. doi: 10.1146/annurev.mi.45.100191.001343. [DOI] [PubMed] [Google Scholar]
  52. Wasserheit J. N. Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sex Transm Dis. 1992 Mar-Apr;19(2):61–77. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES