Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Sep;37(9):641–645. doi: 10.1136/jmg.37.9.641

Sensitivity and specificity of clinical criteria for hereditary non-polyposis colorectal cancer associated mutations in MSH2 and MLH1

S Syngal 1, E Fox 1, C Eng 1, R Kolodner 1, J Garber 1
PMCID: PMC1734690  PMID: 10978352

Abstract

BACKGROUND AND AIMS—There are multiple criteria for the clinical diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). The value of several of the newer proposed diagnostic criteria in identifying subjects with mutations in HNPCC associated mismatch repair genes has not been evaluated, and the performance of the different criteria have not been formally compared with one another.
METHODS—We classified 70 families with suspected hereditary colorectal cancer (excluding familial adenomatous polyposis) by several existing clinical criteria for HNPCC, including the Amsterdam criteria, the Modified Amsterdam criteria, the Amsterdam II criteria, and the Bethesda criteria. The results of analysis of the mismatch repair genes MSH2 and MLH1 by full gene sequencing were available for a proband with colorectal neoplasia in each family. The sensitivity and specificity of each of the clinical criteria for the presence of MSH2 and MLH1 mutations were calculated.
RESULTS—Of the 70 families, 28 families fulfilled the Amsterdam criteria, 39 fulfilled the Modified Amsterdam Criteria, 34 fulfilled the Amsterdam II criteria, and 56 fulfilled at least one of the seven Bethesda Guidelines for the identification of HNPCC patients. The sensitivity and specificity of the Amsterdam criteria were 61% (95% CI 43-79) and 67% (95% CI 50-85). The sensitivity of the Modified Amsterdam and Amsterdam II criteria were 72% (95% CI 58-86) and 78% (95% CI 64-92), respectively. Overall, the most sensitive criteria for identifying families with pathogenic mutations were the Bethesda criteria, with a sensitivity of 94% (95% CI 88-100); the specificity of these criteria was 25% (95% CI 14-36). Use of the first three criteria of the Bethesda guidelines only was associated with a sensitivity of 94% and a specificity of 49% (95% CI 34-64).
CONCLUSIONS—The Amsterdam criteria for HNPCC are neither sufficiently sensitive nor specific for use as a sole criterion for determining which families should undergo testing for MSH2 and MLH1 mutations. The Modified Amsterdam and the Amsterdam II criteria increase sensitivity, but still miss many families with mutations. The most sensitive clinical criteria for identifying subjects with pathogenic MSH2 and MLH1 mutations were the Bethesda Guidelines; a streamlined version of the Bethesda Guidelines may be more specific and easier to use in clinical practice.


Keywords: hereditary non-polyposis colorectal cancer; MSH2; MLH1

Full Text

The Full Text of this article is available as a PDF (111.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaltonen L. A., Peltomäki P., Leach F. S., Sistonen P., Pylkkänen L., Mecklin J. P., Järvinen H., Powell S. M., Jen J., Hamilton S. R. Clues to the pathogenesis of familial colorectal cancer. Science. 1993 May 7;260(5109):812–816. doi: 10.1126/science.8484121. [DOI] [PubMed] [Google Scholar]
  2. Aaltonen L. A., Peltomäki P., Mecklin J. P., Järvinen H., Jass J. R., Green J. S., Lynch H. T., Watson P., Tallqvist G., Juhola M. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994 Apr 1;54(7):1645–1648. [PubMed] [Google Scholar]
  3. Aaltonen L. A., Salovaara R., Kristo P., Canzian F., Hemminki A., Peltomäki P., Chadwick R. B., Käriäinen H., Eskelinen M., Järvinen H. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med. 1998 May 21;338(21):1481–1487. doi: 10.1056/NEJM199805213382101. [DOI] [PubMed] [Google Scholar]
  4. Bellacosa A., Genuardi M., Anti M., Viel A., Ponz de Leon M. Hereditary nonpolyposis colorectal cancer: review of clinical, molecular genetics, and counseling aspects. Am J Med Genet. 1996 Apr 24;62(4):353–364. doi: 10.1002/(SICI)1096-8628(19960424)62:4<353::AID-AJMG7>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  5. Benatti P., Sassatelli R., Roncucci L., Pedroni M., Fante R., Di Gregorio C., Losi L., Gelmini R., Ponz de Leon M. Tumour spectrum in hereditary non-polyposis colorectal cancer (HNPCC) and in families with "suspected HNPCC". A population-based study in northern Italy. Colorectal Cancer Study Group. Int J Cancer. 1993 May 28;54(3):371–377. doi: 10.1002/ijc.2910540304. [DOI] [PubMed] [Google Scholar]
  6. Bronner C. E., Baker S. M., Morrison P. T., Warren G., Smith L. G., Lescoe M. K., Kane M., Earabino C., Lipford J., Lindblom A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994 Mar 17;368(6468):258–261. doi: 10.1038/368258a0. [DOI] [PubMed] [Google Scholar]
  7. Edelmann W., Yang K., Umar A., Heyer J., Lau K., Fan K., Liedtke W., Cohen P. E., Kane M. F., Lipford J. R. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell. 1997 Nov 14;91(4):467–477. doi: 10.1016/s0092-8674(00)80433-x. [DOI] [PubMed] [Google Scholar]
  8. Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
  9. Lazar V., Grandjouan S., Bognel C., Couturier D., Rougier P., Bellet D., Bressac-de Paillerets B. Accumulation of multiple mutations in tumour suppressor genes during colorectal tumorigenesis in HNPCC patients. Hum Mol Genet. 1994 Dec;3(12):2257–2260. doi: 10.1093/hmg/3.12.2257. [DOI] [PubMed] [Google Scholar]
  10. Leach F. S., Nicolaides N. C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomäki P., Sistonen P., Aaltonen L. A., Nyström-Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6):1215–1225. doi: 10.1016/0092-8674(93)90330-s. [DOI] [PubMed] [Google Scholar]
  11. Markowitz S., Wang J., Myeroff L., Parsons R., Sun L., Lutterbaugh J., Fan R. S., Zborowska E., Kinzler K. W., Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995 Jun 2;268(5215):1336–1338. doi: 10.1126/science.7761852. [DOI] [PubMed] [Google Scholar]
  12. Marra G., Boland C. R. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst. 1995 Aug 2;87(15):1114–1125. doi: 10.1093/jnci/87.15.1114. [DOI] [PubMed] [Google Scholar]
  13. Miyaki M., Konishi M., Tanaka K., Kikuchi-Yanoshita R., Muraoka M., Yasuno M., Igari T., Koike M., Chiba M., Mori T. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet. 1997 Nov;17(3):271–272. doi: 10.1038/ng1197-271. [DOI] [PubMed] [Google Scholar]
  14. O'Leary T. J. Molecular diagnosis of hereditary nonpolyposis colorectal cancer. JAMA. 1999 Jul 21;282(3):281–282. doi: 10.1001/jama.282.3.281. [DOI] [PubMed] [Google Scholar]
  15. Papadopoulos N., Nicolaides N. C., Wei Y. F., Ruben S. M., Carter K. C., Rosen C. A., Haseltine W. A., Fleischmann R. D., Fraser C. M., Adams M. D. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994 Mar 18;263(5153):1625–1629. doi: 10.1126/science.8128251. [DOI] [PubMed] [Google Scholar]
  16. Parsons R., Myeroff L. L., Liu B., Willson J. K., Markowitz S. D., Kinzler K. W., Vogelstein B. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res. 1995 Dec 1;55(23):5548–5550. [PubMed] [Google Scholar]
  17. Peltomäki P., Vasen H. F. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology. 1997 Oct;113(4):1146–1158. doi: 10.1053/gast.1997.v113.pm9322509. [DOI] [PubMed] [Google Scholar]
  18. Rodriguez-Bigas M. A., Boland C. R., Hamilton S. R., Henson D. E., Jass J. R., Khan P. M., Lynch H., Perucho M., Smyrk T., Sobin L. A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst. 1997 Dec 3;89(23):1758–1762. doi: 10.1093/jnci/89.23.1758. [DOI] [PubMed] [Google Scholar]
  19. Syngal S., Fox E. A., Li C., Dovidio M., Eng C., Kolodner R. D., Garber J. E. Interpretation of genetic test results for hereditary nonpolyposis colorectal cancer: implications for clinical predisposition testing. JAMA. 1999 Jul 21;282(3):247–253. doi: 10.1001/jama.282.3.247. [DOI] [PubMed] [Google Scholar]
  20. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
  21. Vasen H. F., Mecklin J. P., Khan P. M., Lynch H. T. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991 May;34(5):424–425. doi: 10.1007/BF02053699. [DOI] [PubMed] [Google Scholar]
  22. Vasen H. F., Watson P., Mecklin J. P., Lynch H. T. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999 Jun;116(6):1453–1456. doi: 10.1016/s0016-5085(99)70510-x. [DOI] [PubMed] [Google Scholar]
  23. Wijnen J. T., Vasen H. F., Khan P. M., Zwinderman A. H., van der Klift H., Mulder A., Tops C., Møller P., Fodde R. Clinical findings with implications for genetic testing in families with clustering of colorectal cancer. N Engl J Med. 1998 Aug 20;339(8):511–518. doi: 10.1056/NEJM199808203390804. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES