Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Sep;37(9):646–652. doi: 10.1136/jmg.37.9.646

Recurrent germline mutation in MSH2 arises frequently de novo

D Desai 1, J Lockman 1, R Chadwick 1, X Gao 1, A Percesepe 1, D Evans 1, M Miyaki 1, S T Yuen 1, P Radice 1, E Maher 1, F Wright 1, A de la Chapelle 1
PMCID: PMC1734701  PMID: 10978353

Abstract

INTRODUCTION—An intronic germline mutation in the MSH2 gene, A→T at nt942+3, interferes with the exon 5 donor splicing mechanism leading to a mRNA lacking exon 5. This mutation causes typical hereditary non-polyposis colorectal cancer (HNPCC) and has been observed in numerous probands and families world wide. Recurrent mutations either arise repeatedly de novo or emanate from ancestral founding mutational events. The A→T mutation had previously been shown to be enriched in the population of Newfoundland where most families shared a founder mutation. In contrast, in England, haplotypes failed to suggest a founder effect. If the absence of a founder effect could be proven world wide, the frequent de novo occurrence of the mutation would constitute an unexplored predisposition.
METHODS—We studied 10 families from England, Italy, Hong Kong, and Japan with a battery of intragenic and flanking polymorphic single nucleotide and microsatellite markers.
RESULTS—Haplotype sharing was not apparent, even within the European and Asian kindreds. Our marker panel was sufficient to detect a major mutation arising within the past several thousand generations.
DISCUSSION—As a more ancient founder is implausible, we conclude that the A→T mutation at nt942+3 of MSH2 occurs de novo with a relatively high frequency. We hypothesise that it arises as a consequence of misalignment at replication or recombination caused by a repeat of 26 adenines, of which the mutated A is the first. It is by far the most common recurrent de novo germline mutation yet to be detected in a human mismatch repair gene, accounting for 11% of all known pathogenic MSH2 mutations.


Keywords: MSH2; recurrent mutation; splice donor site of exon 5; founder mutation

Full Text

The Full Text of this article is available as a PDF (135.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai Y. Q., Akiyama Y., Nagasaki H., Lu S. L., Arai T., Morisaki T., Kitamura M., Muto A., Nagashima M., Nomizu T. Predominant germ-line mutation of the hMSH2 gene in Japanese hereditary non-polyposis colorectal cancer kindreds. Int J Cancer. 1999 Aug 12;82(4):512–515. doi: 10.1002/(sici)1097-0215(19990812)82:4<512::aid-ijc7>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  2. Boland C. R., Thibodeau S. N., Hamilton S. R., Sidransky D., Eshleman J. R., Burt R. W., Meltzer S. J., Rodriguez-Bigas M. A., Fodde R., Ranzani G. N. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998 Nov 15;58(22):5248–5257. [PubMed] [Google Scholar]
  3. Chadwick R. B., Conrad M. P., McGinnis M. D., Johnston-Dow L., Spurgeon S. L., Kronick M. N. Heterozygote and mutation detection by direct automated fluorescent DNA sequencing using a mutant Taq DNA polymerase. Biotechniques. 1996 Apr;20(4):676–683. doi: 10.2144/19962004676. [DOI] [PubMed] [Google Scholar]
  4. Chan T. L., Yuen S. T., Chung L. P., Ho J. W., Kwan K. Y., Chan A. S., Ho J. C., Leung S. Y., Wyllie A. H. Frequent microsatellite instability and mismatch repair gene mutations in young Chinese patients with colorectal cancer. J Natl Cancer Inst. 1999 Jul 21;91(14):1221–1226. doi: 10.1093/jnci/91.14.1221. [DOI] [PubMed] [Google Scholar]
  5. Falk C. T., Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet. 1987 Jul;51(Pt 3):227–233. doi: 10.1111/j.1469-1809.1987.tb00875.x. [DOI] [PubMed] [Google Scholar]
  6. Fidalgo P., Almeida M. R., West S., Gaspar C., Maia L., Wijnen J., Albuquerque C., Curtis A., Cravo M., Fodde R. Detection of mutations in mismatch repair genes in Portuguese families with hereditary non-polyposis colorectal cancer (HNPCC) by a multi-method approach. Eur J Hum Genet. 2000 Jan;8(1):49–53. doi: 10.1038/sj.ejhg.5200393. [DOI] [PubMed] [Google Scholar]
  7. Froggatt N. J., Green J., Brassett C., Evans D. G., Bishop D. T., Kolodner R., Maher E. R. A common MSH2 mutation in English and North American HNPCC families: origin, phenotypic expression, and sex specific differences in colorectal cancer. J Med Genet. 1999 Feb;36(2):97–102. [PMC free article] [PubMed] [Google Scholar]
  8. Froggatt N. J., Joyce J. A., Davies R., Gareth D., Evans R., Ponder B. A., Barton D. E., Maher E. R. A frequent hMSH2 mutation in hereditary non-polyposis colon cancer syndrome. Lancet. 1995 Mar 18;345(8951):727–727. doi: 10.1016/s0140-6736(95)90900-1. [DOI] [PubMed] [Google Scholar]
  9. Hästbacka J., de la Chapelle A., Kaitila I., Sistonen P., Weaver A., Lander E. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet. 1992 Nov;2(3):204–211. doi: 10.1038/ng1192-204. [DOI] [PubMed] [Google Scholar]
  10. Kan Y. W., Dozy A. M. Antenatal diagnosis of sickle-cell anaemia by D.N.A. analysis of amniotic-fluid cells. Lancet. 1978 Oct 28;2(8096):910–912. doi: 10.1016/s0140-6736(78)91629-x. [DOI] [PubMed] [Google Scholar]
  11. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  12. Laken S. J., Petersen G. M., Gruber S. B., Oddoux C., Ostrer H., Giardiello F. M., Hamilton S. R., Hampel H., Markowitz A., Klimstra D. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet. 1997 Sep;17(1):79–83. doi: 10.1038/ng0997-79. [DOI] [PubMed] [Google Scholar]
  13. Leach F. S., Nicolaides N. C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomäki P., Sistonen P., Aaltonen L. A., Nyström-Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6):1215–1225. doi: 10.1016/0092-8674(93)90330-s. [DOI] [PubMed] [Google Scholar]
  14. Liu B., Parsons R. E., Hamilton S. R., Petersen G. M., Lynch H. T., Watson P., Markowitz S., Willson J. K., Green J., de la Chapelle A. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 1994 Sep 1;54(17):4590–4594. [PubMed] [Google Scholar]
  15. Liu B., Parsons R., Papadopoulos N., Nicolaides N. C., Lynch H. T., Watson P., Jass J. R., Dunlop M., Wyllie A., Peltomäki P. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med. 1996 Feb;2(2):169–174. doi: 10.1038/nm0296-169. [DOI] [PubMed] [Google Scholar]
  16. Lynch H. T., de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet. 1999 Nov;36(11):801–818. [PMC free article] [PubMed] [Google Scholar]
  17. Miyaki M., Konishi M., Muraoka M., Kikuchi-Yanoshita R., Tanaka K., Iwama T., Mori T., Koike M., Ushio K., Chiba M. Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med (Berl) 1995 Oct;73(10):515–520. doi: 10.1007/BF00198903. [DOI] [PubMed] [Google Scholar]
  18. Moisio A. L., Sistonen P., Weissenbach J., de la Chapelle A., Peltomäki P. Age and origin of two common MLH1 mutations predisposing to hereditary colon cancer. Am J Hum Genet. 1996 Dec;59(6):1243–1251. [PMC free article] [PubMed] [Google Scholar]
  19. Morral N., Bertranpetit J., Estivill X., Nunes V., Casals T., Giménez J., Reis A., Varon-Mateeva R., Macek M., Jr, Kalaydjieva L. The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat Genet. 1994 Jun;7(2):169–175. doi: 10.1038/ng0694-169. [DOI] [PubMed] [Google Scholar]
  20. Peltomäki P., Aaltonen L. A., Sistonen P., Pylkkänen L., Mecklin J. P., Järvinen H., Green J. S., Jass J. R., Weber J. L., Leach F. S. Genetic mapping of a locus predisposing to human colorectal cancer. Science. 1993 May 7;260(5109):810–812. doi: 10.1126/science.8484120. [DOI] [PubMed] [Google Scholar]
  21. Pensotti V., Radice P., Presciuttini S., Calistri D., Gazzoli I., Grimalt Perez A., Mondini P., Buonsanti G., Sala P., Rossetti C. Mean age of tumor onset in hereditary nonpolyposis colorectal cancer (HNPCC) families correlates with the presence of mutations in DNA mismatch repair genes. Genes Chromosomes Cancer. 1997 Jul;19(3):135–142. [PubMed] [Google Scholar]
  22. Pyatt R., Chadwick R. B., Johnson C. K., Adebamowo C., de la Chapelle A., Prior T. W. Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Implications for microsatellite instability testing. Am J Pathol. 1999 Aug;155(2):349–353. doi: 10.1016/S0002-9440(10)65131-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Risch N., de Leon D., Ozelius L., Kramer P., Almasy L., Singer B., Fahn S., Breakefield X., Bressman S. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nat Genet. 1995 Feb;9(2):152–159. doi: 10.1038/ng0295-152. [DOI] [PubMed] [Google Scholar]
  24. Samowitz W. S., Slattery M. L., Potter J. D., Leppert M. F. BAT-26 and BAT-40 instability in colorectal adenomas and carcinomas and germline polymorphisms. Am J Pathol. 1999 Jun;154(6):1637–1641. doi: 10.1016/S0002-9440(10)65418-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Terwilliger J. D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet. 1995 Mar;56(3):777–787. [PMC free article] [PubMed] [Google Scholar]
  26. Viel A., Genuardi M., Capozzi E., Leonardi F., Bellacosa A., Paravatou-Petsotas M., Pomponi M. G., Fornasarig M., Percesepe A., Roncucci L. Characterization of MSH2 and MLH1 mutations in Italian families with hereditary nonpolyposis colorectal cancer. Genes Chromosomes Cancer. 1997 Jan;18(1):8–18. doi: 10.1002/(sici)1098-2264(199701)18:1<8::aid-gcc2>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  27. Wang Q., Lasset C., Desseigne F., Saurin J. C., Maugard C., Navarro C., Ruano E., Descos L., Trillet-Lenoir V., Bosset J. F. Prevalence of germline mutations of hMLH1, hMSH2, hPMS1, hPMS2, and hMSH6 genes in 75 French kindreds with nonpolyposis colorectal cancer. Hum Genet. 1999 Jul-Aug;105(1-2):79–85. doi: 10.1007/s004399900064. [DOI] [PubMed] [Google Scholar]
  28. Wijnen J., van der Klift H., Vasen H., Khan P. M., Menko F., Tops C., Meijers Heijboer H., Lindhout D., Møller P., Fodde R. MSH2 genomic deletions are a frequent cause of HNPCC. Nat Genet. 1998 Dec;20(4):326–328. doi: 10.1038/3795. [DOI] [PubMed] [Google Scholar]
  29. Yan H., Papadopoulos N., Marra G., Perrera C., Jiricny J., Boland C. R., Lynch H. T., Chadwick R. B., de la Chapelle A., Berg K. Conversion of diploidy to haploidy. Nature. 2000 Feb 17;403(6771):723–724. doi: 10.1038/35001659. [DOI] [PubMed] [Google Scholar]
  30. Zhou X. P., Hoang J. M., Cottu P., Thomas G., Hamelin R. Allelic profiles of mononucleotide repeat microsatellites in control individuals and in colorectal tumors with and without replication errors. Oncogene. 1997 Oct 2;15(14):1713–1718. doi: 10.1038/sj.onc.1201337. [DOI] [PubMed] [Google Scholar]
  31. de la Chapelle A. Testing tumors for microsatellite instability. Eur J Hum Genet. 1999 May-Jun;7(4):407–408. doi: 10.1038/sj.ejhg.5200335. [DOI] [PubMed] [Google Scholar]
  32. de la Chapelle A., Wright F. A. Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12416–12423. doi: 10.1073/pnas.95.21.12416. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES