Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3497–3501. doi: 10.1128/iai.63.9.3497-3501.1995

Rapid and sensitive method for evaluating Pseudomonas aeruginosa virulence factors during corneal infections in mice.

M J Preston 1, S M Fleiszig 1, T S Zaidi 1, J B Goldberg 1, V D Shortridge 1, M L Vasil 1, G B Pier 1
PMCID: PMC173483  PMID: 7642283

Abstract

A murine corneal scratch model has been used extensively to study various aspects of the pathogenesis of Pseudomonas aeruginosa, a common etiologic agent of corneal infections. This model uses mild inhalation anesthetics which keep the animals immobile for a relatively short time and promote the interaction between the infecting organisms and the corneal wound. Under these circumstances, only a small number of P. aeruginosa isolates delivered at inocula of > 10(7) CFU are infectious. We determined that this model is useful for studying other P. aeruginosa strains given at lower doses if injectable anesthetics are administered prior to infection to keep the animals immobile for 15 to 30 min. Under these conditions, eight clinical isolates of P. aeruginosa tested at doses of 10(8) CFU per eye induced corneal perforation and/or phthisis in C3H/HeN mice. The 50% infective doses of several strains were between 3 x 10(2) and 1 x 10(5) CFU per mouse eye. When this modified anesthetic procedure was used to evaluate the roles of different P. aeruginosa virulence factors in eye infections, pathology was not observed when eyes were inoculated with 10(8) CFU of strains deficient in production of a complete lipopolysaccharide or the RpoN sigma factor. A strain with a point mutation in the fur gene, involved in production of iron-regulated factors, showed decreased virulence, while a mutant deficient in both hemolytic and nonhemolytic phospholipase C was fully virulent. By modifying the anesthesia procedure, the corneal scratch model allows rapid evaluations of the roles of P. aeruginosa virulence factors in corneal infections.

Full Text

The Full Text of this article is available as a PDF (211.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beisel K. W., Hazlett L. D., Berk R. S. Dominant susceptibility effect on the murine corneal response to Pseudomonas aeruginosa. Proc Soc Exp Biol Med. 1983 Apr;172(4):488–491. doi: 10.3181/00379727-172-41592. [DOI] [PubMed] [Google Scholar]
  2. Berk R. S., Hazlett L. D., Beisel K. W. Genetic studies on resistant and susceptibility genes controlling the mouse cornea to infection with Pseudomonas aeruginosa. Antibiot Chemother (1971) 1987;39:83–91. doi: 10.1159/000414336. [DOI] [PubMed] [Google Scholar]
  3. Coster D. J., Badenoch P. R. Host, microbial, and pharmacological factors affecting the outcome of suppurative keratitis. Br J Ophthalmol. 1987 Feb;71(2):96–101. doi: 10.1136/bjo.71.2.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coyne M. J., Jr, Russell K. S., Coyle C. L., Goldberg J. B. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol. 1994 Jun;176(12):3500–3507. doi: 10.1128/jb.176.12.3500-3507.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fleiszig S. M., Efron N., Pier G. B. Extended contact lens wear enhances Pseudomonas aeruginosa adherence to human corneal epithelium. Invest Ophthalmol Vis Sci. 1992 Sep;33(10):2908–2916. [PubMed] [Google Scholar]
  6. Fleiszig S. M., Zaidi T. S., Fletcher E. L., Preston M. J., Pier G. B. Pseudomonas aeruginosa invades corneal epithelial cells during experimental infection. Infect Immun. 1994 Aug;62(8):3485–3493. doi: 10.1128/iai.62.8.3485-3493.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerke J. R., Magliocco M. V. Experimental Pseudomonas aeruginosa Infection of the Mouse Cornea. Infect Immun. 1971 Feb;3(2):209–216. doi: 10.1128/iai.3.2.209-216.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hatano K., Goldberg J. B., Pier G. B. Pseudomonas aeruginosa lipopolysaccharide: evidence that the O side chains and common antigens are on the same molecule. J Bacteriol. 1993 Aug;175(16):5117–5128. doi: 10.1128/jb.175.16.5117-5128.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hazlett L. D., Rosen D. D., Berk R. S. Age-related susceptibility to Pseudomonas aeruginosa ocular infections in mice. Infect Immun. 1978 Apr;20(1):25–29. doi: 10.1128/iai.20.1.25-29.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarrell K., Kropinski A. M. The chemical composition of the lipopolysaccharide from Pseudomonas aeruginosa strain PAO and a spontaneously derived rough mutant. Microbios. 1977;19(76):103–116. [PubMed] [Google Scholar]
  11. Markham R. B., Powderly W. G. Exposure of mice to live Pseudomonas aeruginosa generates protective cell-mediated immunity in the absence of an antibody response. J Immunol. 1988 Mar 15;140(6):2039–2045. [PubMed] [Google Scholar]
  12. Maske R., Hill J. C., Oliver S. P. Management of bacterial corneal ulcers. Br J Ophthalmol. 1986 Mar;70(3):199–201. doi: 10.1136/bjo.70.3.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moon M. M., Hazlett L. D., Hancock R. E., Berk R. S., Barrett R. Monoclonal antibodies provide protection against ocular Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci. 1988 Aug;29(8):1277–1284. [PubMed] [Google Scholar]
  14. Noth J. M., Barza M., Forster R. K., Okumoto M., Pier G., Baum J. Serotyping of ocular Pseudomonas aeruginosa clinical isolates. Cornea. 1986;5(3):151–153. doi: 10.1097/00003226-198605030-00006. [DOI] [PubMed] [Google Scholar]
  15. Ostroff R. M., Vasil M. L. Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J Bacteriol. 1987 Oct;169(10):4597–4601. doi: 10.1128/jb.169.10.4597-4601.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Poggio E. C., Glynn R. J., Schein O. D., Seddon J. M., Shannon M. J., Scardino V. A., Kenyon K. R. The incidence of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. N Engl J Med. 1989 Sep 21;321(12):779–783. doi: 10.1056/NEJM198909213211202. [DOI] [PubMed] [Google Scholar]
  17. Preston M. J., Berk J. M., Hazlett L. D., Berk R. S. Serum antibody response to Pseudomonas aeruginosa antigens during corneal infection. Infect Immun. 1991 Jun;59(6):1984–1990. doi: 10.1128/iai.59.6.1984-1990.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Preston M. J., Kernack K., Berk R. S. Kinetics of serum and ocular antibody responses in susceptible mice that received a secondary corneal infection with Pseudomonas aeruginosa. Infect Immun. 1993 Jun;61(6):2713–2716. doi: 10.1128/iai.61.6.2713-2716.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Preston M. J., Kernacki K. A., Berk J. M., Hazlett L. D., Berk R. S. Kinetics of serum, tear, and corneal antibody responses in resistant and susceptible mice intracorneally infected with Pseudomonas aeruginosa. Infect Immun. 1992 Mar;60(3):885–891. doi: 10.1128/iai.60.3.885-891.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prince R. W., Storey D. G., Vasil A. I., Vasil M. L. Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA103 and PA01. Mol Microbiol. 1991 Nov;5(11):2823–2831. doi: 10.1111/j.1365-2958.1991.tb01991.x. [DOI] [PubMed] [Google Scholar]
  21. Schein O. D., Glynn R. J., Poggio E. C., Seddon J. M., Kenyon K. R. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. A case-control study. Microbial Keratitis Study Group. N Engl J Med. 1989 Sep 21;321(12):773–778. doi: 10.1056/NEJM198909213211201. [DOI] [PubMed] [Google Scholar]
  22. Shortridge V. D., Lazdunski A., Vasil M. L. Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol. 1992 Apr;6(7):863–871. doi: 10.1111/j.1365-2958.1992.tb01537.x. [DOI] [PubMed] [Google Scholar]
  23. Totten P. A., Lara J. C., Lory S. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol. 1990 Jan;172(1):389–396. doi: 10.1128/jb.172.1.389-396.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vasil M. L., Graham L. M., Ostroff R. M., Shortridge V. D., Vasil A. I. Phospholipase C: molecular biology and contribution to the pathogenesis of Pseudomonas aeruginosa. Antibiot Chemother (1971) 1991;44:34–47. doi: 10.1159/000420295. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES