Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3507–3513. doi: 10.1128/iai.63.9.3507-3513.1995

Monoclonal antibody to a conserved epitope on proteins encoded by Babesia bigemina and present on the surface of intact infected erythrocytes.

S Shompole 1, L E Perryman 1, F R Rurangirwa 1, T F McElwain 1, D P Jasmer 1, A J Musoke 1, C W Wells 1, T C McGuire 1
PMCID: PMC173485  PMID: 7543884

Abstract

To define Babesia bigemina-specific antigens on the surface of infected erythrocytes, monoclonal antibodies (MAbs) were identified by live-cell immunofluorescence. As determined by live-cell immunofluorescence, two MAbs made to the Mexico strain reacted with the Mexico strain and three Kenya strains, while three MAbs made to the Kenya-Ngong strain reacted with the Kenya strains but not the Mexico strain. Binding of MAb 44.18 (made to the Mexico strain) to a strain-common epitope was confirmed by immunoelectron microscopy and by surface-specific immunoprecipitation of [35S]methionine-labeled proteins (200, 28, and 16 kDa in size), which also demonstrated that the MAb recognized an epitope on proteins encoded by B. bigemina. In immunoblots, the MAb bound to predominant antigens with sizes of 200 and 220 kDa in erythrocyte lysates infected with strains from Puerto Rico, St. Croix, Texcoco (Mexico), Kenya, and Mexico. Major antigens with sizes of 200 and 220 kDa were isolated from a MAb 44.18 affinity matrix. Calf serum antibodies to these isolated antigens bound to erythrocytes infected with either the Mexico or Kenya strains as determined by live-cell immunofluorescence, allowing the conclusion that at least one conserved surface epitope was recognized. Calf serum antibodies identified major labeled proteins with sizes of 200 and 72 kDa by surface-specific immunoprecipitation, and infected erythrocytes sensitized with these antibodies were phagocytized by cultured bovine peripheral blood monocytes. These results provide a rationale for evaluating antigens identified by MAb 44.18 individually and as components of subunit vaccines.

Full Text

The Full Text of this article is available as a PDF (819.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M., Rabbege J., Uni S., Ristic M., Miller L. H. Structural alteration of the membrane of erythrocytes infected with Babesia bovis. Am J Trop Med Hyg. 1985 Jan;34(1):45–49. doi: 10.4269/ajtmh.1985.34.45. [DOI] [PubMed] [Google Scholar]
  2. Allred D. R., Cinque R. M., Lane T. J., Ahrens K. P. Antigenic variation of parasite-derived antigens on the surface of Babesia bovis-infected erythrocytes. Infect Immun. 1994 Jan;62(1):91–98. doi: 10.1128/iai.62.1.91-98.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allred D. R., Hines S. A., Ahrens K. P. Isolate-specific parasite antigens of the Babesia bovis-infected erythrocyte surface. Mol Biochem Parasitol. 1993 Jul;60(1):121–132. doi: 10.1016/0166-6851(93)90035-v. [DOI] [PubMed] [Google Scholar]
  4. Barbet A. F., Anderson L. W., Palmer G. H., McGuire T. C. Comparison of proteins synthesized by two different isolates of Anaplasma marginale. Infect Immun. 1983 Jun;40(3):1068–1074. doi: 10.1128/iai.40.3.1068-1074.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coppel R. L., Culvenor J. G., Bianco A. E., Crewther P. E., Stahl H. D., Brown G. V., Anders R. F., Kemp D. J. Variable antigen associated with the surface of erythrocytes infected with mature stages of Plasmodium falciparum. Mol Biochem Parasitol. 1986 Sep;20(3):265–277. doi: 10.1016/0166-6851(86)90107-6. [DOI] [PubMed] [Google Scholar]
  6. Dalrymple B. P. Molecular variation and diversity in candidate vaccine antigens from Babesia. Acta Trop. 1993 May;53(3-4):227–238. doi: 10.1016/0001-706x(93)90031-6. [DOI] [PubMed] [Google Scholar]
  7. Figueroa J. V., Buening G. M., Kinden D. A., Green T. J. Identification of common surface antigens among Babesia bigemina isolates by using monoclonal antibodies. Parasitology. 1990 Apr;100(Pt 2):161–175. doi: 10.1017/s0031182000061163. [DOI] [PubMed] [Google Scholar]
  8. Goff W. L., Wagner G. G., Craig T. M. Increased activity of bovine ADCC effector cells during acute Babesia bovis infection. Vet Parasitol. 1984 Oct;16(1-2):5–15. doi: 10.1016/0304-4017(84)90003-7. [DOI] [PubMed] [Google Scholar]
  9. Goff W. L., Wagner G. G., Craig T. M., Long R. F. The bovine immune response to tick-derived Babesia bovis infection: serological studies of isolated immunoglobulins. Vet Parasitol. 1982 Nov;11(2-3):109–120. doi: 10.1016/0304-4017(82)90032-2. [DOI] [PubMed] [Google Scholar]
  10. Hines S. A., McElwain T. F., Buening G. M., Palmer G. H. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Mol Biochem Parasitol. 1989 Nov;37(1):1–9. doi: 10.1016/0166-6851(89)90096-0. [DOI] [PubMed] [Google Scholar]
  11. Hodgson J. L., Stiller D., Jasmer D. P., Buening G. M., Wagner G. G., McGuire T. C. Babesia bigemina: quantitation of infection in nymphal and adult Boophilus microplus using a DNA probe. Exp Parasitol. 1992 Feb;74(1):117–126. doi: 10.1016/0014-4894(92)90146-2. [DOI] [PubMed] [Google Scholar]
  12. Howard R. J., Rodwell B. J., Smith P. M., Callow L. L., Mitchell G. F. Comparison of the surface proteins and glycoproteins on erythrocytes of calves before and during infection with Babesia bovis. J Protozool. 1980 May;27(2):241–247. doi: 10.1111/j.1550-7408.1980.tb04690.x. [DOI] [PubMed] [Google Scholar]
  13. Jacobson R. H., Parrodi F., Wright I. G., Fitzgerald C. J., Dobson C. Babesia bovis: in vitro phagocytosis promoted by immune serum and by antibodies produced against protective antigens. Parasitol Res. 1993;79(3):221–226. doi: 10.1007/BF00931896. [DOI] [PubMed] [Google Scholar]
  14. McElwain T. F., Perryman L. E., Davis W. C., McGuire T. C. Antibodies define multiple proteins with epitopes exposed on the surface of live Babesia bigemina merozoites. J Immunol. 1987 Apr 1;138(7):2298–2304. [PubMed] [Google Scholar]
  15. McElwain T. F., Perryman L. E., Musoke A. J., McGuire T. C. Molecular characterization and immunogenicity of neutralization-sensitive Babesia bigemina merozoite surface proteins. Mol Biochem Parasitol. 1991 Aug;47(2):213–222. doi: 10.1016/0166-6851(91)90181-5. [DOI] [PubMed] [Google Scholar]
  16. McGuire T. C., Musoke A. J., Kurtti T. Functional properties of bovine IgG1 and IgG2: interaction with complement, macrophages, neutrophils and skin. Immunology. 1979 Oct;38(2):249–256. [PMC free article] [PubMed] [Google Scholar]
  17. Murakami K., Tanabe K. An antigen of Plasmodium yoelii that translocates into the mouse erythrocyte membrane upon entry into the host cell. J Cell Sci. 1985 Feb;73:311–320. doi: 10.1242/jcs.73.1.311. [DOI] [PubMed] [Google Scholar]
  18. Palmer D. A., Buening G. M., Carson C. A. Cryopreservation of Babesia bovis for in vitro cultivation. Parasitology. 1982 Jun;84(Pt 3):567–572. doi: 10.1017/s0031182000052835. [DOI] [PubMed] [Google Scholar]
  19. Palmer G. H., McGuire T. C. Immune serum against Anaplasma marginale initial bodies neutralizes infectivity for cattle. J Immunol. 1984 Aug;133(2):1010–1015. [PubMed] [Google Scholar]
  20. Parrodi F., Jacobson R. H., Wright I. G., Fitzgerald C. J., Dobson C. The effect of immune serum and complement on the in vitro phagocytosis of Babesia rodhaini. Parasite Immunol. 1991 Sep;13(5):457–471. doi: 10.1111/j.1365-3024.1991.tb00544.x. [DOI] [PubMed] [Google Scholar]
  21. Ross J. P., Löhr K. F. Serological diagnosis of Babesia bigemina infection in cattle by the indirect fluorescent antibody test. Res Vet Sci. 1968 Nov;9(6):557–562. [PubMed] [Google Scholar]
  22. Ruebush M. J., Hanson W. L. Thymus dependence of resistance to infection with Babesia microti of human origin in mice. Am J Trop Med Hyg. 1980 Jul;29(4):507–515. doi: 10.4269/ajtmh.1980.29.507. [DOI] [PubMed] [Google Scholar]
  23. Schofield L., Villaquiran J., Ferreira A., Schellekens H., Nussenzweig R., Nussenzweig V. Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature. 1987 Dec 17;330(6149):664–666. doi: 10.1038/330664a0. [DOI] [PubMed] [Google Scholar]
  24. Shompole S., McElwain T. F., Jasmer D. P., Hines S. A., Katende J., Musoke A. J., Rurangirwa F. R., McGuire T. C. Identification of Babesia bigemina infected erythrocyte surface antigens containing epitopes conserved among strains. Parasite Immunol. 1994 Mar;16(3):119–127. doi: 10.1111/j.1365-3024.1994.tb00331.x. [DOI] [PubMed] [Google Scholar]
  25. Simpson C. F. Electron microscopic comparison of Babesia spp. and hepatic changes in ponies and mice. Am J Vet Res. 1970 Oct;31(10):1763–1768. [PubMed] [Google Scholar]
  26. Suarez C. E., McElwain T. F., Stephens E. B., Mishra V. S., Palmer G. H. Sequence conservation among merozoite apical complex proteins of Babesia bovis, Babesia bigemina and other apicomplexa. Mol Biochem Parasitol. 1991 Dec;49(2):329–332. doi: 10.1016/0166-6851(91)90077-j. [DOI] [PubMed] [Google Scholar]
  27. Towbin H., Gordon J. Immunoblotting and dot immunobinding--current status and outlook. J Immunol Methods. 1984 Sep 4;72(2):313–340. doi: 10.1016/0022-1759(84)90001-2. [DOI] [PubMed] [Google Scholar]
  28. Vega C. A., Buening G. M., Green T. J., Carson C. A. In vitro cultivation of Babesia bigemina. Am J Vet Res. 1985 Feb;46(2):416–420. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES