Abstract
Using a cell line derived from the human cervix and a rapid fluorescence cytotoxicity assay, we have shown that Chlamydia trachomatis infection can be blocked by certain sulfated polysaccharides (carrageenan, pentosan polysulfate, fucoidan, and dextran sulfate) and glycosaminoglycans (heparin, heparan sulfate, and dermatan sulfate) but not by other glycosaminoglycans (chondroitin sulfate A or C, keratan sulfate, and hyaluronic acid). The most negatively charged molecules are the most effective at blocking infection. Results of infection at 4 degrees C suggest that sulfated polyanions act by preventing the adherence of chlamydiae to target cells. These and additional blocking studies with enzymes suggest that a heparan sulfate-like glycosaminoglycan on the surface of elementary bodies is involved in the adherence of chlamydiae to target cells, probably through a nonspecific charge interaction or possibly a heparin-binding protein. We previously observed that the same sulfated polysaccharides inhibit transmission of human immunodeficiency virus in vitro and suggested that these compounds could be used in a vaginal formulation to inhibit infection by human immunodeficiency virus. The results of the present study suggest that the same type of formulation may inhibit sexual transmission of chlamydia.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker Y., Hochberg E., Zakay-Rones Z. Interaction of trachoma elementary bodies with host cells. Isr J Med Sci. 1969 Jan-Feb;5(1):121–124. [PubMed] [Google Scholar]
- Bilozur M. E., Biswas C. Identification and characterization of heparan sulfate-binding proteins from human lung carcinoma cells. J Biol Chem. 1990 Nov 15;265(32):19697–19703. [PubMed] [Google Scholar]
- Bose S. K., Paul R. G. Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells. J Gen Microbiol. 1982 Jun;128(6):1371–1379. doi: 10.1099/00221287-128-6-1371. [DOI] [PubMed] [Google Scholar]
- Bârzu T., Molho P., Tobelem G., Petitou M., Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta. 1985 May 30;845(2):196–203. doi: 10.1016/0167-4889(85)90177-6. [DOI] [PubMed] [Google Scholar]
- Chen J. C., Stephens R. S. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol Microbiol. 1994 Feb;11(3):501–507. doi: 10.1111/j.1365-2958.1994.tb00331.x. [DOI] [PubMed] [Google Scholar]
- Dawson C. R., Schachter J. Strategies for treatment and control of blinding trachoma: cost-effectiveness of topical or systemic antibiotics. Rev Infect Dis. 1985 Nov-Dec;7(6):768–773. doi: 10.1093/clinids/7.6.768. [DOI] [PubMed] [Google Scholar]
- Grayston J. T., Wang S. New knowledge of chlamydiae and the diseases they cause. J Infect Dis. 1975 Jul;132(1):87–105. doi: 10.1093/infdis/132.1.87. [DOI] [PubMed] [Google Scholar]
- Hodinka R. L., Davis C. H., Choong J., Wyrick P. B. Ultrastructural study of endocytosis of Chlamydia trachomatis by McCoy cells. Infect Immun. 1988 Jun;56(6):1456–1463. doi: 10.1128/iai.56.6.1456-1463.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kindness G., Long W. F., Williamson F. B. Enhancement of antithrombin III activity by carrageenans. Thromb Res. 1979;15(1-2):49–60. doi: 10.1016/0049-3848(79)90051-3. [DOI] [PubMed] [Google Scholar]
- Kjellén L., Oldberg A., Hök M. Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem. 1980 Nov 10;255(21):10407–10413. [PubMed] [Google Scholar]
- Kjellén L., Oldberg A., Rubin K., Hök M. Binding of heparin and heparan sulphate to rat liver cells. Biochem Biophys Res Commun. 1977 Jan 10;74(1):126–133. doi: 10.1016/0006-291x(77)91384-5. [DOI] [PubMed] [Google Scholar]
- Kohnke-Godt B., Gabius H. J. Heparin-binding lectin from human placenta: further characterization of ligand binding and structural properties and its relationship to histones and heparin-binding growth factors. Biochemistry. 1991 Jan 8;30(1):55–65. doi: 10.1021/bi00215a009. [DOI] [PubMed] [Google Scholar]
- Kolber M. A., Quinones R. R., Gress R. E., Henkart P. A. Measurement of cytotoxicity by target cell release and retention of the fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF). J Immunol Methods. 1988 Apr 6;108(1-2):255–264. doi: 10.1016/0022-1759(88)90427-9. [DOI] [PubMed] [Google Scholar]
- Kuo C. C., Grayston T. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect Immun. 1976 Apr;13(4):1103–1109. doi: 10.1128/iai.13.4.1103-1109.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo C. C., Wang S. P., Grayston J. T. Effect of polycations, polyanions and neuraminidase on the infectivity of trachoma-inclusin conjunctivitis and lymphogranuloma venereum organisms HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunction. Infect Immun. 1973 Jul;8(1):74–79. doi: 10.1128/iai.8.1.74-79.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung L., Saigo K., Grant D. Heparin binds to human monocytes and modulates their procoagulant activities and secretory phenotypes. Effects of histidine-rich glycoprotein. Blood. 1989 Jan;73(1):177–184. [PubMed] [Google Scholar]
- McGee Z. A., Gorby G. L., Wyrick P. B., Hodinka R., Hoffman L. H. Parasite-directed endocytosis. Rev Infect Dis. 1988 Jul-Aug;10 (Suppl 2):S311–S316. doi: 10.1093/cid/10.supplement_2.s311. [DOI] [PubMed] [Google Scholar]
- Mitao M., Reumann W., Winkler B., Richart R. M., Fujiwara A., Crum C. P. Chlamydial cervicitis and cervical intraepithelial neoplasia: an immunohistochemical analysis. Gynecol Oncol. 1984 Sep;19(1):90–97. doi: 10.1016/0090-8258(84)90163-x. [DOI] [PubMed] [Google Scholar]
- Moulder J. W. Interaction of chlamydiae and host cells in vitro. Microbiol Rev. 1991 Mar;55(1):143–190. doi: 10.1128/mr.55.1.143-190.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce-Pratt R., Malamud D., Phillips D. M. Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus. J Virol. 1994 May;68(5):2898–2905. doi: 10.1128/jvi.68.5.2898-2905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce-Pratt R., Phillips D. M. Studies of adhesion of lymphocytic cells: implications for sexual transmission of human immunodeficiency virus. Biol Reprod. 1993 Mar;48(3):431–445. doi: 10.1095/biolreprod48.3.431. [DOI] [PubMed] [Google Scholar]
- Raboudi N., Julian J., Rohde L. H., Carson D. D. Identification of cell-surface heparin/heparan sulfate-binding proteins of a human uterine epithelial cell line (RL95). J Biol Chem. 1992 Jun 15;267(17):11930–11939. [PubMed] [Google Scholar]
- Reynolds D. J., Pearce J. H. Endocytic mechanisms utilized by chlamydiae and their influence on induction of productive infection. Infect Immun. 1991 Sep;59(9):3033–3039. doi: 10.1128/iai.59.9.3033-3039.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson J., Eschenbach D. A., Alexander E. R., Holmes K. K. Light and electron microscopic study of Chlamydia trachomatis infection of the uterine cervix. J Infect Dis. 1975 Jun;131(6):678–687. doi: 10.1093/infdis/131.6.678. [DOI] [PubMed] [Google Scholar]
- Sykes J. A., Whitescarver J., Jernstrom P., Nolan J. F., Byatt P. Some properties of a new epithelial cell line of human origin. J Natl Cancer Inst. 1970 Jul;45(1):107–122. [PubMed] [Google Scholar]
- Tan X., Pearce-Pratt R., Phillips D. M. Productive infection of a cervical epithelial cell line with human immunodeficiency virus: implications for sexual transmission. J Virol. 1993 Nov;67(11):6447–6452. doi: 10.1128/jvi.67.11.6447-6452.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tran D., Carpentier J. L., Sawano F., Gorden P., Orci L. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7957–7961. doi: 10.1073/pnas.84.22.7957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wierda W. G., Mehr D. S., Kim Y. B. Comparison of fluorochrome-labeled and 51Cr-labeled targets for natural killer cytotoxicity assay. J Immunol Methods. 1989 Aug 15;122(1):15–24. doi: 10.1016/0022-1759(89)90329-3. [DOI] [PubMed] [Google Scholar]
- Wyrick P. B., Davis C. H., Knight S. T., Choong J., Raulston J. E., Schramm N. An in vitro human epithelial cell culture system for studying the pathogenesis of Chlamydia trachomatis. Sex Transm Dis. 1993 Sep-Oct;20(5):248–256. doi: 10.1097/00007435-199309000-00002. [DOI] [PubMed] [Google Scholar]
- Zhang J. P., Stephens R. S. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell. 1992 May 29;69(5):861–869. doi: 10.1016/0092-8674(92)90296-o. [DOI] [PubMed] [Google Scholar]