Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3550–3554. doi: 10.1128/iai.63.9.3550-3554.1995

Mechanisms of inhibition of Cryptococcus neoformans by human lymphocytes.

S M Levitz 1, E A North 1, M P Dupont 1, T S Harrison 1
PMCID: PMC173492  PMID: 7642290

Abstract

Recently, our laboratory and others have demonstrated that human peripheral blood T and NK lymphocytes directly inhibit the growth of Cryptococcus neoformans. In this study, we further define the conditions under which lymphocyte-mediated fungistasis against C. neoformans occurs and examine whether mechanisms implicated in lymphocyte-mediated activities against other target cells are also involved in anticryptococcal activity. The addition of whole or broken heat-killed C. neoformans modestly inhibited lymphocyte-mediated fungistasis, whereas other particulates had no effect. The hydroxyl radical scavenger catechin, but not diethyl urea or propyl gallate, profoundly inhibited fungistasis. Salicylic acid inhibited fungistasis in a dose-dependent fashion. However, two other cyclooxygenase inhibitors, piroxicam and indomethacin, had no effect, suggesting that the mechanism of inhibition by salicylic acid was cyclooxygenase independent. Reagent prostaglandin E2, at concentrations shown by others to inhibit NK cell-mediated bactericidal and tumorlytic activities, had no effect on lymphocyte-mediated fungistasis. The addition of selected monoclonal antibodies or ligands reactive with receptors on human lymphocytes had no significant effect on lymphocyte-mediated fungistasis. Acapsular, small-capsuled, and large-capsuled C. neoformans organisms were inhibited by lymphocytes to an approximately equal extent. These data demonstrate that lymphocyte-mediated activity against C. neoformans proceeds regardless of the presence of capsule and by mechanisms at least in part dissimilar from those seen with other target cells.

Full Text

The Full Text of this article is available as a PDF (203.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajpai A., Brahmi Z. Target cell-induced inactivation of cytolytic lymphocytes. Role and regulation of CD45 and calyculin A-inhibited phosphatase in response to interleukin-2. J Biol Chem. 1994 Jul 22;269(29):18864–18869. [PubMed] [Google Scholar]
  2. Beno D. W., Mathews H. L. Quantitative measurement of lymphocyte mediated growth inhibition of Candida albicans. J Immunol Methods. 1993 Sep 15;164(2):155–164. doi: 10.1016/0022-1759(93)90308-t. [DOI] [PubMed] [Google Scholar]
  3. Berke G. The binding and lysis of target cells by cytotoxic lymphocytes: molecular and cellular aspects. Annu Rev Immunol. 1994;12:735–773. doi: 10.1146/annurev.iy.12.040194.003511. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharjee A. K., Bennett J. E., Glaudemans C. P. Capsular polysaccharides of Cryptococcus neoformans. Rev Infect Dis. 1984 Sep-Oct;6(5):619–624. doi: 10.1093/clinids/6.5.619. [DOI] [PubMed] [Google Scholar]
  5. Chalupny N. J., Peach R., Hollenbaugh D., Ledbetter J. A., Farr A. G., Aruffo A. T-cell activation molecule 4-1BB binds to extracellular matrix proteins. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10360–10364. doi: 10.1073/pnas.89.21.10360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chambers C. A., Gallinger S., Anderson S. K., Giardina S., Ortaldo J. R., Hozumi N., Roder J. Expression of the NK-TR gene is required for NK-like activity in human T cells. J Immunol. 1994 Mar 15;152(6):2669–2674. [PubMed] [Google Scholar]
  7. Duwe A. K., Werkmeister J., Roder J. C., Lauzon R., Payne U. Natural killer cell-mediated lysis involves an hydroxyl radical-dependent step. J Immunol. 1985 Apr;134(4):2637–2644. [PubMed] [Google Scholar]
  8. Garcia-Peñarrubia P., Bankhurst A. D., Koster F. T. Prostaglandins from human T suppressor/cytotoxic cells modulate natural killer antibacterial activity. J Exp Med. 1989 Aug 1;170(2):601–606. doi: 10.1084/jem.170.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibboney J. J., Haak R. A., Kleinhans F. W., Brahmi Z. Electron spin resonance spectroscopy does not reveal hydroxyl radical production in activated natural killer lymphocytes. J Leukoc Biol. 1988 Dec;44(6):545–550. doi: 10.1002/jlb.44.6.545. [DOI] [PubMed] [Google Scholar]
  10. Houpt D. C., Pfrommer G. S., Young B. J., Larson T. A., Kozel T. R. Occurrences, immunoglobulin classes, and biological activities of antibodies in normal human serum that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect Immun. 1994 Jul;62(7):2857–2864. doi: 10.1128/iai.62.7.2857-2864.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobson E. S., Ayers D. J., Harrell A. C., Nicholas C. C. Genetic and phenotypic characterization of capsule mutants of Cryptococcus neoformans. J Bacteriol. 1982 Jun;150(3):1292–1296. doi: 10.1128/jb.150.3.1292-1296.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  13. Kopp E., Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994 Aug 12;265(5174):956–959. doi: 10.1126/science.8052854. [DOI] [PubMed] [Google Scholar]
  14. Kägi D., Ledermann B., Bürki K., Seiler P., Odermatt B., Olsen K. J., Podack E. R., Zinkernagel R. M., Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994 May 5;369(6475):31–37. doi: 10.1038/369031a0. [DOI] [PubMed] [Google Scholar]
  15. Levitz S. M. Activation of human peripheral blood mononuclear cells by interleukin-2 and granulocyte-macrophage colony-stimulating factor to inhibit Cryptococcus neoformans. Infect Immun. 1991 Oct;59(10):3393–3397. doi: 10.1128/iai.59.10.3393-3397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levitz S. M., Dupont M. P. Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J Clin Invest. 1993 Apr;91(4):1490–1498. doi: 10.1172/JCI116354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levitz S. M., Dupont M. P., Smail E. H. Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect Immun. 1994 Jan;62(1):194–202. doi: 10.1128/iai.62.1.194-202.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levitz S. M., Farrell T. P. Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect Immun. 1990 May;58(5):1201–1209. doi: 10.1128/iai.58.5.1201-1209.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levitz S. M., Farrell T. P., Maziarz R. T. Killing of Cryptococcus neoformans by human peripheral blood mononuclear cells stimulated in culture. J Infect Dis. 1991 May;163(5):1108–1113. doi: 10.1093/infdis/163.5.1108. [DOI] [PubMed] [Google Scholar]
  20. Levitz S. M., Lyman C. A., Murata T., Sullivan J. A., Mandell G. L., Diamond R. D. Cytosolic calcium changes in individual neutrophils stimulated by opsonized and unopsonized Candida albicans hyphae. Infect Immun. 1987 Nov;55(11):2783–2788. doi: 10.1128/iai.55.11.2783-2788.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levitz S. M. Macrophage-Cryptococcus interactions. Immunol Ser. 1994;60:533–543. [PubMed] [Google Scholar]
  22. Levitz S. M., Tabuni A., Kornfeld H., Reardon C. C., Golenbock D. T. Production of tumor necrosis factor alpha in human leukocytes stimulated by Cryptococcus neoformans. Infect Immun. 1994 May;62(5):1975–1981. doi: 10.1128/iai.62.5.1975-1981.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levitz S. M. The ecology of Cryptococcus neoformans and the epidemiology of cryptococcosis. Rev Infect Dis. 1991 Nov-Dec;13(6):1163–1169. doi: 10.1093/clinids/13.6.1163. [DOI] [PubMed] [Google Scholar]
  24. Linnemeyer P. A., Pollack S. B. Prostaglandin E2-induced changes in the phenotype, morphology, and lytic activity of IL-2-activated natural killer cells. J Immunol. 1993 May 1;150(9):3747–3754. [PubMed] [Google Scholar]
  25. Liu J. H., Wei S., Blanchard D. K., Djeu J. Y. Restoration of lytic function in a human natural killer cell line by gene transfection. Cell Immunol. 1994 Jun;156(1):24–35. doi: 10.1006/cimm.1994.1150. [DOI] [PubMed] [Google Scholar]
  26. Mathew P. A., Garni-Wagner B. A., Land K., Takashima A., Stoneman E., Bennett M., Kumar V. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells. J Immunol. 1993 Nov 15;151(10):5328–5337. [PubMed] [Google Scholar]
  27. McCormick M. L., Roeder T. L., Railsback M. A., Britigan B. E. Eosinophil peroxidase-dependent hydroxyl radical generation by human eosinophils. J Biol Chem. 1994 Nov 11;269(45):27914–27919. [PubMed] [Google Scholar]
  28. Murphy J. W., Hidore M. R., Wong S. C. Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J Clin Invest. 1993 Apr;91(4):1553–1566. doi: 10.1172/JCI116361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ramos O. F., Patarroyo M., Yefenof E., Klein E. Requirement of leukocytic cell adhesion molecules (CD11a-c/CD18) in the enhanced NK lysis of iC3b-opsonized targets. J Immunol. 1989 Jun 1;142(11):4100–4104. [PubMed] [Google Scholar]
  30. Ratner A., Clark W. R. Lack of target cell participation in cytotoxic T lymphocyte-mediated lysis. J Immunol. 1991 Jul 1;147(1):55–59. [PubMed] [Google Scholar]
  31. Robertson M. J., Caligiuri M. A., Manley T. J., Levine H., Ritz J. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol. 1990 Nov 15;145(10):3194–3201. [PubMed] [Google Scholar]
  32. Warren H. S., Parish C. R. Mapping the dextran sulfate binding site on CD2. Immunol Cell Biol. 1990 Jun;68(Pt 3):199–205. doi: 10.1038/icb.1990.28. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES