Abstract
The ability of washed whole cells of Treponema denticola ATCC 35405 to hydrolyze (inactivate) substance P, bradykinin, and angiotensin I was studied. Substance P was attacked primarily at the Phe-8-Gly-9 bond by a chymotrypsin-like proteinase (CTLP), at Pro-4-Gln-5 by an endo-acting prolyl oligopeptidase (POPase), and at Gln-5-Gln-6 by an endopeptidase (FALGPA-peptidase). Bradykinin was cleaved at Phe-5-Ser-6 by the FALGPA-peptidase and at Pro-7-Phe-8 by the POPase. Angiotensin I was rapidly converted to angiotensin II by the CTLP, and both angiotensin I and angiotensin II were further hydrolyzed at Pro-7-Phe-8 by the POPase. All these enzymes were assumed to be cell associated and were easily extracted with a mild (0.05 to 0.1%) Triton X-100 treatment. Because it was conceivable that the hydrolysis of substance P at the Phe-8-Gly-9 bond was catalyzed by a CTLP described earlier (V.-J. Uitto, D. Grenier, E. C. S. Chan, and B. C. McBride, Infect. Immun. 56:2717-2722, 1988), the enzyme was purified to homogeneity by means of conventional fast protein liquid chromatography procedures. For kinetic studies, Phe-8(4-nitro)-substance P (NSP) (absorption maximum at 309.2 nm, epsilon = 545 M-1 cm-1) was synthesized to replace substance P as a substrate in kinetic studies. In reversed-phase chromatography, both NSP and substance P gave identical results with both whole cells and the purified enzyme. The CTLP has a mass of 95 kDa, and its activity is suggested to be based on an active seryl residue, on an active imidazole group, and on an active carboxyl group but not on metal cations. The enzyme hydrolyzes N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroaniline (SAAPFNA, a typical chymotrypsin substrate) at a high rate and several proteins, such as calf thymus histone, human plasma fibrinogen, milk caseins, and gelatin. Among the substrates tested, substance P showed the highest affinity (Km = 0.22 mM) for the purified enzyme. Depending on conditions, clinically applicable chlorhexidine levels (3.2 mmol/liter, or 0.2%) strongly activated (up to fourfold) the hydrolysis of SAAPFNA by whole cells and the purified CTLP. The hydrolysis of NSP by whole cells and purified CTLP was slightly inhibited by chlorhexidine. The results demonstrated the versatility and the effectiveness of the outer membrane of T. denticola in occasioning a rapid breakdown and inactivation of human bioactive peptides and other peptidolytic catalyses.(ABSTRACT TRUNCATED AT 400 WORDS)
Full Text
The Full Text of this article is available as a PDF (292.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa S., Kuramitsu H. K. Cloning and sequence analysis of a chymotrypsinlike protease from Treponema denticola. Infect Immun. 1994 Aug;62(8):3424–3433. doi: 10.1128/iai.62.8.3424-3433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett-Bee K., Newboult L., Edwards S. The membrane destabilising action of the antibacterial agent chlorhexidine. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):249–253. doi: 10.1111/j.1574-6968.1994.tb06896.x. [DOI] [PubMed] [Google Scholar]
- Beighton D., Decker J., Homer K. A. Effects of chlorhexidine on proteolytic and glycosidic enzyme activities of dental plaque bacteria. J Clin Periodontol. 1991 Feb;18(2):85–89. doi: 10.1111/j.1600-051x.1991.tb01693.x. [DOI] [PubMed] [Google Scholar]
- Blow A. M., Barrett A. J. Action of human cathepsin G on the oxidized B chain of insulin. Biochem J. 1977 Jan 1;161(1):17–19. doi: 10.1042/bj1610017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bury R. W., Mashford M. L. Biological activity of C-terminal partial sequences of substance P. J Med Chem. 1976 Jun;19(6):854–856. doi: 10.1021/jm00228a028. [DOI] [PubMed] [Google Scholar]
- Bury R. W., Mashford M. L. Substance P: its pharmacology and physiological roles. Aust J Exp Biol Med Sci. 1977 Dec;55(6):671–735. doi: 10.1038/icb.1977.67. [DOI] [PubMed] [Google Scholar]
- Cascieri M. A., Liang T. Characterization of the substance P receptor in rat brain cortex membranes and the inhibition of radioligand binding by guanine nucleotides. J Biol Chem. 1983 Apr 25;258(8):5158–5164. [PubMed] [Google Scholar]
- Emilson C. G. Potential efficacy of chlorhexidine against mutans streptococci and human dental caries. J Dent Res. 1994 Mar;73(3):682–691. doi: 10.1177/00220345940730031401. [DOI] [PubMed] [Google Scholar]
- Fiehn N. E. Susceptibility of small-sized oral spirochetes to eight antibiotics and chlorhexidine. Acta Pathol Microbiol Immunol Scand B. 1987 Dec;95(6):325–329. doi: 10.1111/j.1699-0463.1987.tb03133.x. [DOI] [PubMed] [Google Scholar]
- Fischer G., Bang H., Berger E., Schellenberger A. Conformational specificity of chymotrypsin toward proline-containing substrates. Biochim Biophys Acta. 1984 Nov 23;791(1):87–97. doi: 10.1016/0167-4838(84)90285-1. [DOI] [PubMed] [Google Scholar]
- Grenier D. Effect of proteolytic enzymes on the lysis and growth of oral bacteria. Oral Microbiol Immunol. 1994 Aug;9(4):224–228. doi: 10.1111/j.1399-302x.1994.tb00062.x. [DOI] [PubMed] [Google Scholar]
- Grenier D. Reduction of proteolytic degradation by chlorhexidine. J Dent Res. 1993 Mar;72(3):630–633. doi: 10.1177/00220345930720031301. [DOI] [PubMed] [Google Scholar]
- Grenier D., Uitto V. J., McBride B. C. Cellular location of a Treponema denticola chymotrypsinlike protease and importance of the protease in migration through the basement membrane. Infect Immun. 1990 Feb;58(2):347–351. doi: 10.1128/iai.58.2.347-351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall M. E., Miley F., Stewart J. M. The role of enzymatic processing in the biological actions of substance P. Peptides. 1989 Jul-Aug;10(4):895–901. doi: 10.1016/0196-9781(89)90132-0. [DOI] [PubMed] [Google Scholar]
- Levy H., Feinstein G. The digestion of the oxidized B chain of insulin by human neutrophile proteases: elastase and chymotrypsin-like protease. Biochim Biophys Acta. 1979 Mar 16;567(1):35–42. doi: 10.1016/0005-2744(79)90169-4. [DOI] [PubMed] [Google Scholar]
- Liang T., Cascieri M. A. Substance P receptor on parotid cell membranes. J Neurosci. 1981 Oct;1(10):1133–1141. doi: 10.1523/JNEUROSCI.01-10-01133.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McRae B., Nakajima K., Travis J., Powers J. C. Studies on reactivity of human leukocyte elastase, cathepsin G, and porcine pancreatic elastase toward peptides including sequences related to the reactive site of alpha 1-protease inhibitor (alpha 1-antitrypsin). Biochemistry. 1980 Aug 19;19(17):3973–3978. doi: 10.1021/bi00558a013. [DOI] [PubMed] [Google Scholar]
- Mikx F. H., Jacobs F., Satumalay C. Cell-bound peptidase activities of Treponema denticola ATCC 33520 in continuous culture. J Gen Microbiol. 1992 Sep;138(9):1837–1842. doi: 10.1099/00221287-138-9-1837. [DOI] [PubMed] [Google Scholar]
- Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
- Mäkinen K. K., Brummer R., Scheinin A. Selective effect of quaternary ammonium salts on the activity of arylaminopeptidases of the dental pulp, and on trypsin, chymotrypsin and leucine aminopeptidase. Acta Odontol Scand. 1970 Jun;28(3):389–398. doi: 10.3109/00016357009032042. [DOI] [PubMed] [Google Scholar]
- Mäkinen K. K., Mäkinen P. L., Loesche W. J., Syed S. A. Purification and general properties of an oligopeptidase from Treponema denticola ATCC 35405--a human oral spirochete. Arch Biochem Biophys. 1995 Feb 1;316(2):689–698. doi: 10.1006/abbi.1995.1092. [DOI] [PubMed] [Google Scholar]
- Mäkinen K. K., Mäkinen P. L. Selective effect of domiphen bromide (dodecyldimethyl(2-phenoxyethyl)ammonium bromide) on some hydrolytic enzymes. Biochim Biophys Acta. 1970 Apr 22;206(1):143–151. doi: 10.1016/0005-2744(70)90091-4. [DOI] [PubMed] [Google Scholar]
- Mäkinen K. K., Mäkinen P. L., Syed S. A. Purification and substrate specificity of an endopeptidase from the human oral spirochete Treponema denticola ATCC 35405, active on furylacryloyl-Leu-Gly-Pro-Ala and bradykinin. J Biol Chem. 1992 Jul 15;267(20):14285–14293. [PubMed] [Google Scholar]
- Mäkinen P. L., Mäkinen K. K., Syed S. A. An endo-acting proline-specific oligopeptidase from Treponema denticola ATCC 35405: evidence of hydrolysis of human bioactive peptides. Infect Immun. 1994 Nov;62(11):4938–4947. doi: 10.1128/iai.62.11.4938-4947.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakajima K., Powers J. C., Ashe B. M., Zimmerman M. Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the alpha 1-protease inhibitor reactive site. J Biol Chem. 1979 May 25;254(10):4027–4032. [PubMed] [Google Scholar]
- Ohta K., Makinen K. K., Loesche W. J. Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun. 1986 Jul;53(1):213–220. doi: 10.1128/iai.53.1.213-220.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pougeois R., Satre M., Vignais P. V. N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, a new inhibitor of the mitochondrial F1-ATPase. Biochemistry. 1978 Jul 25;17(15):3018–3023. doi: 10.1021/bi00608a013. [DOI] [PubMed] [Google Scholar]
- Que X. C., Kuramitsu H. K. Isolation and characterization of the Treponema denticola prtA gene coding for chymotrypsinlike protease activity and detection of a closely linked gene encoding PZ-PLGPA-hydrolyzing activity. Infect Immun. 1990 Dec;58(12):4099–4105. doi: 10.1128/iai.58.12.4099-4105.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radford J. R., Homer K. A., Naylor M. N., Beighton D. Inhibition of human subgingival plaque protease activity by chlorhexidine. Arch Oral Biol. 1992 Apr;37(4):245–248. doi: 10.1016/0003-9969(92)90045-a. [DOI] [PubMed] [Google Scholar]
- Regoli D., Rhaleb N. E., Dion S., Drapeau G. New selective bradykinin receptor antagonists and bradykinin B2 receptor characterization. Trends Pharmacol Sci. 1990 Apr;11(4):156–161. doi: 10.1016/0165-6147(90)90067-I. [DOI] [PubMed] [Google Scholar]
- Saccomani G., Barcellona M. L., Sachs G. Reactivity of gastric (H+ + K+)-ATPase to N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. J Biol Chem. 1981 Dec 10;256(23):12405–12410. [PubMed] [Google Scholar]
- Shah H. N., Gharbia S. E., Zhang M. I. Measurement of electrical bioimpedance for studying utilization of amino acids and peptides by Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola. Clin Infect Dis. 1993 Jun;16 (Suppl 4):S404–S407. doi: 10.1093/clinids/16.supplement_4.s404. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Minematsu Y., Reilly C. F., Travis J., Powers J. C. Human leukocyte cathepsin G. Subsite mapping with 4-nitroanilides, chemical modification, and effect of possible cofactors. Biochemistry. 1985 Apr 9;24(8):2040–2047. doi: 10.1021/bi00329a036. [DOI] [PubMed] [Google Scholar]
- Uitto V. J., Grenier D., Chan E. C., McBride B. C. Isolation of a chymotrypsinlike enzyme from Treponema denticola. Infect Immun. 1988 Oct;56(10):2717–2722. doi: 10.1128/iai.56.10.2717-2722.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh D. A., Wharton J., Blake D. R., Polak J. M. Species and tissue specificity of vasoactive regulatory peptides. Int J Tissue React. 1993;15(3):109–124. [PubMed] [Google Scholar]
- Wyss C. Aspartame as a source of essential phenylalanine for the growth of oral anaerobes. FEMS Microbiol Lett. 1993 Apr 15;108(3):255–258. doi: 10.1111/j.1574-6968.1993.tb06111.x. [DOI] [PubMed] [Google Scholar]