Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2002 Jan;39(1):23–29. doi: 10.1136/jmg.39.1.23

A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proα1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases

J Pace 1, D Chitayat 1, M Atkinson 1, W Wilcox 1, U Schwarze 1, P Byers 1
PMCID: PMC1734955  PMID: 11826020

Abstract

Osteogenesis imperfecta (OI) is characterised by brittle bones and caused by mutations in the type I collagen genes, COL1A1 and COL1A2. We identified a mutation in the carboxyl-terminal propeptide coding region of one COL1A1 allele in an infant who died with an OI phenotype that differed from the usual lethal form and had regions of increased bone density. The newborn female had dysmorphic facial features, including loss of mandibular angle. Bilateral upper and lower limb contractures were present with multiple fractures in the long bones and ribs. The long bones were not compressed and their ends were radiographically dense. She died after a few hours and histopathological studies identified extramedullary haematopoiesis in the liver, little lamellar bone formation, decreased osteoclasts, abnormally thickened bony trabeculae with retained cartilage in long bones, and diminished marrow spaces similar to those seen in dense bone diseases such as osteopetrosis and pycnodysostosis. The child was heterozygous for a COL1A1 4321G→T transversion in exon 52 that changed a conserved aspartic acid to tyrosine (D1441Y). Abnormal proα1(I) chains were slow to assemble into dimers and trimers, and abnormal molecules were retained intracellularly for an extended period. The secreted type I procollagen molecules synthesised by cultured dermal fibroblasts were overmodified along the full length but had normal thermal stability. These findings suggest that the unusual phenotype reflected both a diminished amount of secreted type I procollagen and the presence of a population of stable and overmodified molecules that might support increased mineralisation or interfere with degradation of bone.

Full Text

The Full Text of this article is available as a PDF (206.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bateman J. F., Lamande S. R., Dahl H. H., Chan D., Mascara T., Cole W. G. A frameshift mutation results in a truncated nonfunctional carboxyl-terminal pro alpha 1(I) propeptide of type I collagen in osteogenesis imperfecta. J Biol Chem. 1989 Jul 5;264(19):10960–10964. [PubMed] [Google Scholar]
  2. Bonadio J., Byers P. H. Subtle structural alterations in the chains of type I procollagen produce osteogenesis imperfecta type II. Nature. 1985 Jul 25;316(6026):363–366. doi: 10.1038/316363a0. [DOI] [PubMed] [Google Scholar]
  3. Bonadio J., Holbrook K. A., Gelinas R. E., Jacob J., Byers P. H. Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. J Biol Chem. 1985 Feb 10;260(3):1734–1742. [PubMed] [Google Scholar]
  4. Bulleid N. J., Wilson R., Lees J. F. Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation. Biochem J. 1996 Jul 1;317(Pt 1):195–202. doi: 10.1042/bj3170195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byers P. H., Tsipouras P., Bonadio J. F., Starman B. J., Schwartz R. C. Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen. Am J Hum Genet. 1988 Feb;42(2):237–248. [PMC free article] [PubMed] [Google Scholar]
  6. Chessler S. D., Byers P. H. BiP binds type I procollagen pro alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta. J Biol Chem. 1993 Aug 25;268(24):18226–18233. [PubMed] [Google Scholar]
  7. Chessler S. D., Wallis G. A., Byers P. H. Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta. J Biol Chem. 1993 Aug 25;268(24):18218–18225. [PubMed] [Google Scholar]
  8. Cohen-Solal L., Zylberberg L., Sangalli A., Gomez Lira M., Mottes M. Substitution of an aspartic acid for glycine 700 in the alpha 2(I) chain of type I collagen in a recurrent lethal type II osteogenesis imperfecta dramatically affects the mineralization of bone. J Biol Chem. 1994 May 20;269(20):14751–14758. [PubMed] [Google Scholar]
  9. Culbert A. A., Lowe M. P., Atkinson M., Byers P. H., Wallis G. A., Kadler K. E. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite. Biochem J. 1995 Nov 1;311(Pt 3):815–820. doi: 10.1042/bj3110815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalgleish R. The Human Collagen Mutation Database 1998. Nucleic Acids Res. 1998 Jan 1;26(1):253–255. doi: 10.1093/nar/26.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dalgleish R. The human type I collagen mutation database. Nucleic Acids Res. 1997 Jan 1;25(1):181–187. doi: 10.1093/nar/25.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frattini A., Orchard P. J., Sobacchi C., Giliani S., Abinun M., Mattsson J. P., Keeling D. J., Andersson A. K., Wallbrandt P., Zecca L. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000 Jul;25(3):343–346. doi: 10.1038/77131. [DOI] [PubMed] [Google Scholar]
  13. Hawkins J. R., Superti-Furga A., Steinmann B., Dalgleish R. A 9-base pair deletion in COL1A1 in a lethal variant of osteogenesis imperfecta. J Biol Chem. 1991 Nov 25;266(33):22370–22374. [PubMed] [Google Scholar]
  14. Horwitz E. M., Prockop D. J., Fitzpatrick L. A., Koo W. W., Gordon P. L., Neel M., Sussman M., Orchard P., Marx J. C., Pyeritz R. E. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999 Mar;5(3):309–313. doi: 10.1038/6529. [DOI] [PubMed] [Google Scholar]
  15. Jones S. J., Glorieux F. H., Travers R., Boyde A. The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int. 1999 Jan;64(1):8–17. doi: 10.1007/s002239900571. [DOI] [PubMed] [Google Scholar]
  16. Kornak U., Schulz A., Friedrich W., Uhlhaas S., Kremens B., Voit T., Hasan C., Bode U., Jentsch T. J., Kubisch C. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet. 2000 Aug 12;9(13):2059–2063. doi: 10.1093/hmg/9.13.2059. [DOI] [PubMed] [Google Scholar]
  17. Lees J. F., Tasab M., Bulleid N. J. Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J. 1997 Mar 3;16(5):908–916. doi: 10.1093/emboj/16.5.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lund A. M., Schwartz M., Skovby F. Variable clinical expression in a family with OI type IV due to deletion of three base pairs in COL1A1. Clin Genet. 1996 Nov;50(5):304–309. doi: 10.1111/j.1399-0004.1996.tb02379.x. [DOI] [PubMed] [Google Scholar]
  19. Mizuno M., Fujisawa R., Kuboki Y. Carboxyl-terminal propeptide of type I collagen (c-propeptide) modulates the action of TGF-beta on MC3T3-E1 osteoblastic cells. FEBS Lett. 2000 Aug 18;479(3):123–126. doi: 10.1016/s0014-5793(00)01900-1. [DOI] [PubMed] [Google Scholar]
  20. Mizuno M., Fujisawa R., Kuboki Y. The effect of carboxyl-terminal propeptide of type I collagen (c-propeptide) on collagen synthesis of preosteoblasts and osteoblasts. Calcif Tissue Int. 2000 Nov;67(5):391–399. doi: 10.1007/s002230001150. [DOI] [PubMed] [Google Scholar]
  21. Molyneux K., Starman B. J., Byers P. H., Dalgleish R. A single amino acid deletion in the alpha 2(I) chain of type I collagen produces osteogenesis imperfecta type III. Hum Genet. 1993 Feb;90(6):621–628. doi: 10.1007/BF00202479. [DOI] [PubMed] [Google Scholar]
  22. Myllyharju J., Kivirikko K. I. Collagens and collagen-related diseases. Ann Med. 2001 Feb;33(1):7–21. doi: 10.3109/07853890109002055. [DOI] [PubMed] [Google Scholar]
  23. Oliver J. E., Thompson E. M., Pope F. M., Nicholls A. C. Mutation in the carboxy-terminal propeptide of the Pro alpha 1(I) chain of type I collagen in a child with severe osteogenesis imperfecta (OI type III): possible implications for protein folding. Hum Mutat. 1996;7(4):318–326. doi: 10.1002/(SICI)1098-1004(1996)7:4<318::AID-HUMU5>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  24. Pace J. M., Atkinson M., Willing M. C., Wallis G., Byers P. H. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Hum Mutat. 2001 Oct;18(4):319–326. doi: 10.1002/humu.1193. [DOI] [PubMed] [Google Scholar]
  25. Pace J. M., Kuslich C. D., Willing M. C., Byers P. H. Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfecta. J Med Genet. 2001 Jul;38(7):443–449. doi: 10.1136/jmg.38.7.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pihlajaniemi T., Dickson L. A., Pope F. M., Korhonen V. R., Nicholls A., Prockop D. J., Myers J. C. Osteogenesis imperfecta: cloning of a pro-alpha 2(I) collagen gene with a frameshift mutation. J Biol Chem. 1984 Nov 10;259(21):12941–12944. [PubMed] [Google Scholar]
  27. Roth D. E., Venta P. J., Tashian R. E., Sly W. S. Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1804–1808. doi: 10.1073/pnas.89.5.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rushton J. A., Schmitz S., Gunn-Moore F., Sherman D., Pappas C. A., Ritchie J. M., Haynes L. W. Growth arrest and spontaneous differentiation are initiated through an autocrine loop in clonally derived Schwann cells by alpha1-procollagen I C-propeptide. J Neurochem. 1999 Nov;73(5):1816–1827. [PubMed] [Google Scholar]
  29. Sillence D. O., Rimoin D. L., Danks D. M. Clinical variability in osteogenesis imperfecta-variable expressivity or genetic heterogeneity. Birth Defects Orig Artic Ser. 1979;15(5B):113–129. [PubMed] [Google Scholar]
  30. Sillence D. O., Senn A., Danks D. M. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979 Apr;16(2):101–116. doi: 10.1136/jmg.16.2.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Traub W., Arad T., Vetter U., Weiner S. Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol. 1994 Aug;14(4):337–345. doi: 10.1016/0945-053x(94)90200-3. [DOI] [PubMed] [Google Scholar]
  32. Wallis G. A., Kadler K. E., Starman B. J., Byers P. H. A tripeptide deletion in the triple-helical domain of the pro alpha 1(I) chain of type I procollagen in a patient with lethal osteogenesis imperfecta does not alter cleavage of the molecule by N-proteinase. J Biol Chem. 1992 Dec 15;267(35):25529–25534. [PubMed] [Google Scholar]
  33. Willing M. C., Cohn D. H., Byers P. H. Frameshift mutation near the 3' end of the COL1A1 gene of type I collagen predicts an elongated Pro alpha 1(I) chain and results in osteogenesis imperfecta type I. J Clin Invest. 1990 Jan;85(1):282–290. doi: 10.1172/JCI114424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Willing M. C., Deschenes S. P., Slayton R. L., Roberts E. J. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am J Hum Genet. 1996 Oct;59(4):799–809. [PMC free article] [PubMed] [Google Scholar]
  35. Wu C. H., Donovan C. B., Wu G. Y. Evidence for pretranslational regulation of collagen synthesis by procollagen propeptides. J Biol Chem. 1986 Aug 15;261(23):10482–10484. [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES