Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3595–3599. doi: 10.1128/iai.63.9.3595-3599.1995

Pasteurella haemolytica lipopolysaccharide-associated protein induces pulmonary inflammation after bronchoscopic deposition in calves and sheep.

K A Brogden 1, M R Ackermann 1, B M Debey 1
PMCID: PMC173499  PMID: 7642296

Abstract

The lipopolysaccharide (LPS)-associated protein (LAP) was extracted from Pasteurella haemolytica serotype A1 strains L101 (bovine origin) and 82-25 (ovine origin). Extracts contained 0.017% total LPS and appeared as only two bands at 14 and 16.6 kDa after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. To determine the extent of pulmonary inflammation induced by LAP and its possible role in the pathogenesis of pneumonic pasteurellosis, LAP (500 micrograms in pyrogen-free saline [PFS]) was deposited by fiber-optic bronchoscopy into the dorsum of the caudal portion of the cranial lobe of the right lung of calves (strain L101 LAP) and sheep (strain 82-25 LAP). LPS (500 micrograms in PFS), 3-h P. haemolytica cultures (1.6 x 10(8) to 1.9 x 10(8) CFU in PFS), and PFS alone were deposited similarly as controls. At necropsy, 24 h after deposition, gross and histologic pulmonary lesions of calves and sheep given LAP, LPS, and P. haemolytica were similar and consisted of various degrees of acute bronchopneumonia (relative severities of lesions induced: LAP < LPS < live organisms). By subjective histologic interpretation and semiquantitative morphometry, animals given LAP had the highest percentage of macrophages per alveolar lumen and the lowest percentage of neutrophils. The lesions from animals given LPS were more severe than those given LAP, but the morphometric cell counts were similar. In contrast, animals inoculated with P. haemolytica had lesions typical of this agent, consisting of many neutrophils, proteinaceous exudate, and a few macrophages. Morphometrically, these lesions had the highest numbers of neutrophils and the lowest numbers of macrophages. These studies show that LAP can induce an inflammatory response in the alveolar lumens and may play a role in the pathogenesis of pneumonic pasteurellosis.

Full Text

The Full Text of this article is available as a PDF (815.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann M. R., DeBey B. M., Stabel T. J., Gold J. H., Register K. B., Meehan J. T. Distribution of anti-CD68 (EBM11) immunoreactivity in formalin-fixed, paraffin-embedded bovine tissues. Vet Pathol. 1994 May;31(3):340–348. doi: 10.1177/030098589403100307. [DOI] [PubMed] [Google Scholar]
  2. Al-Darraji A. M., Cutlip R. C., Lehmkuhl H. D., Graham D. L. Experimental infection of lambs with bovine respiratory syncytial virus and Pasteurella haemolytica: pathologic studies. Am J Vet Res. 1982 Feb;43(2):224–229. [PubMed] [Google Scholar]
  3. Brogden K. A., Adlam C., Lehmkuhl H. D., Cutlip R. C., Knights J. M., Engen R. L. Effect of Pasteurella haemolytica (A1) capsular polysaccharide on sheep lung in vivo and on pulmonary surfactant in vitro. Am J Vet Res. 1989 Apr;50(4):555–559. [PubMed] [Google Scholar]
  4. Brogden K. A., Cutlip R. C., Lehmkuhl H. D. Response of sheep after localized deposition of lipopolysaccharide in the lung. Exp Lung Res. 1984;7(2):123–132. doi: 10.3109/01902148409069673. [DOI] [PubMed] [Google Scholar]
  5. Brogden K. A., Rimler R. B. Lysates of turkey-grown Pasteurella multocida: partial solubilization of the cross-protection factor(s). Am J Vet Res. 1982 Oct;43(10):1781–1785. [PubMed] [Google Scholar]
  6. Brogden K. A., Rose D., Cutlip R. C., Lehmkuhl H. D., Tully J. G. Isolation and identification of mycoplasmas from the nasal cavity of sheep. Am J Vet Res. 1988 Oct;49(10):1669–1672. [PubMed] [Google Scholar]
  7. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  8. Goldman R. C., White D., Leive L. Identification of outer membrane proteins, including known lymphocyte mitogens, as the endotoxin protein of Escherichia coli 0111. J Immunol. 1981 Oct;127(4):1290–1294. [PubMed] [Google Scholar]
  9. Goodman G. W., Sultzer B. M. Characterization of the chemical and physical properties of a novel B-lymphocyte activator, endotoxin protein. Infect Immun. 1979 Jun;24(3):685–696. doi: 10.1128/iai.24.3.685-696.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lehmkuhl H. D., Contreras J. A., Cutlip R. C., Brogden K. A. Clinical and microbiologic findings in lambs inoculated with Pasteurella haemolytica after infection with ovine adenovirus type 6. Am J Vet Res. 1989 May;50(5):671–675. [PubMed] [Google Scholar]
  11. Morrison D. C., Betz S. J., Jacobs D. M. Isolation of a lipid A bound polypeptide responsible for "LPS-initiated" mitogenesis of C3H/HeJ spleen cells. J Exp Med. 1976 Sep 1;144(3):840–846. doi: 10.1084/jem.144.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morrison D. C., Ulevitch R. J. The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol. 1978 Nov;93(2):526–618. [PMC free article] [PubMed] [Google Scholar]
  13. Parsons N. J., Kwaasi A. A., Perera V. Y., Patel P. V., Martin P. M., Smith H. Outer membrane proteins of Neisseria gonorrhoeae associated with survival within human polymorphonuclear phagocytes. J Gen Microbiol. 1982 Dec;128(12):3077–3081. doi: 10.1099/00221287-128-12-3077. [DOI] [PubMed] [Google Scholar]
  14. Phillips M., Castagna R., Sultzer B. M., Eisenstein T. K. Immunogenic endotoxin associated protein from a rough strain of Salmonella. FEMS Microbiol Immunol. 1989 Dec;1(8-9):485–490. doi: 10.1111/j.1574-6968.1989.tb02439.x. [DOI] [PubMed] [Google Scholar]
  15. Rocque W. J., Coughlin R. T., McGroarty E. J. Lipopolysaccharide tightly bound to porin monomers and trimers from Escherichia coli K-12. J Bacteriol. 1987 Sep;169(9):4003–4010. doi: 10.1128/jb.169.9.4003-4010.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sacks J. M., Gillette K. G., Frank G. H. Development and evaluation of an enzyme-linked immunosorbent assay for bovine antibody to Pasteurella haemolytica: constructing an enzyme-linked immunosorbent assay titer. Am J Vet Res. 1988 Jan;49(1):38–41. [PubMed] [Google Scholar]
  17. Strittmatter W., Galanos C. Characterisation of protein co-extracted together with LPS in Escherichia coli, Salmonella minnesota and Yersinia enterocolitica. Microb Pathog. 1987 Jan;2(1):29–36. doi: 10.1016/0882-4010(87)90112-4. [DOI] [PubMed] [Google Scholar]
  18. Whiteley L. O., Maheswaran S. K., Weiss D. J., Ames T. R. Morphological and morphometrical analysis of the acute response of the bovine alveolar wall to Pasteurella haemolytica A1-derived endotoxin and leucotoxin. J Comp Pathol. 1991 Jan;104(1):23–32. doi: 10.1016/s0021-9975(08)80085-0. [DOI] [PubMed] [Google Scholar]
  19. Wu M. C., Heath E. C. Isolation and characterization of lipopolysaccharide protein from Escherichia coli. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2572–2576. doi: 10.1073/pnas.70.9.2572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van den Ingh T. S., Visser I. J., Henricks P. A., Binkhorst G. J. Pulmonary lesions induced by a Pasteurella haemolytica cytotoxin preparation in calves. Zentralbl Veterinarmed B. 1990 Jun;37(4):297–308. doi: 10.1111/j.1439-0450.1990.tb01062.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES