Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2002 Nov;39(11):790–795. doi: 10.1136/jmg.39.11.790

High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH)

E Hollox 1, T Atia 1, G Cross 1, T Parkin 1, J Armour 1
PMCID: PMC1735019  PMID: 12414816

Abstract

Background: Subtelomeric regions of the human genome are gene rich, with a high level of sequence polymorphism. A number of clinical conditions, including learning disability, have been attributed to subtelomeric deletions or duplications, but screening for deletion in these regions using conventional cytogenetic methods and fluorescence in situ hybridisation (FISH) is laborious. Here we report that a new method, multiplex amplifiable probe hybridisation (MAPH), can be used to screen for copy number at subtelomeric regions.

Methods: We have constructed a set of MAPH probes with each subtelomeric region represented at least once, so that one gel lane can assay copy number at all chromosome ends in one person. Each probe has been sequenced and, where possible, its position relative to the telomere determined by comparison with mapped clones.

Results: The sensitivity of the probes has been characterised on a series of cytogenetically verified positive controls and 83 normal controls were used to assess the frequency of polymorphic copy number with no apparent phenotypic effect. We have also used MAPH to test a cohort of 37 people selected from males referred for fragile X syndrome testing and found six changes that were confirmed by dosage PCR.

Conclusions: MAPH can be used to screen subtelomeric regions of chromosomes for deletions and duplications before confirmation by FISH or dosage PCR. The high throughput nature of this technique allows it to be used for large scale screening of subtelomeric copy number, before confirmation by FISH. In practice, the availability of a rapid and efficient screen may allow subtelomeric analysis to be applied to a wider selection of patients than is currently possible using FISH alone.

Full Text

The Full Text of this article is available as a PDF (172.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A complete set of human telomeric probes and their clinical application. National Institutes of Health and Institute of Molecular Medicine collaboration. Nat Genet. 1996 Sep;14(1):86–89. doi: 10.1038/ng0996-86. [DOI] [PubMed] [Google Scholar]
  2. Anderlid Britt-Marie, Schoumans Jacqueline, Annerén Göran, Sahlén Sigrid, Kyllerman Mårten, Vujic Mihailo, Hagberg Bengt, Blennow Elisabeth, Nordenskjöld Magnus. Subtelomeric rearrangements detected in patients with idiopathic mental retardation. Am J Med Genet. 2002 Feb 1;107(4):275–284. doi: 10.1002/ajmg.10029. [DOI] [PubMed] [Google Scholar]
  3. Armour J. A., Sismani C., Patsalis P. C., Cross G. Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res. 2000 Jan 15;28(2):605–609. doi: 10.1093/nar/28.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballif B. C., Kashork C. D., Shaffer L. G. The promise and pitfalls of telomere region-specific probes. Am J Hum Genet. 2000 Nov;67(5):1356–1359. doi: 10.1016/s0002-9297(07)62969-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biesecker Leslie G. The end of the beginning of chromosome ends. Am J Med Genet. 2002 Feb 1;107(4):263–266. doi: 10.1002/ajmg.10160. [DOI] [PubMed] [Google Scholar]
  6. Brackley K. J., Kilby M. D., Morton J., Whittle M. J., Knight S. J., Flint J. A case of recurrent congenital fetal anomalies associated with a familial subtelomeric translocation. Prenat Diagn. 1999 Jun;19(6):570–574. [PubMed] [Google Scholar]
  7. Brown W. R., MacKinnon P. J., Villasanté A., Spurr N., Buckle V. J., Dobson M. J. Structure and polymorphism of human telomere-associated DNA. Cell. 1990 Oct 5;63(1):119–132. doi: 10.1016/0092-8674(90)90293-n. [DOI] [PubMed] [Google Scholar]
  8. Colleaux L., Rio M., Heuertz S., Moindrault S., Turleau C., Ozilou C., Gosset P., Raoult O., Lyonnet S., Cormier-Daire V. A novel automated strategy for screening cryptic telomeric rearrangements in children with idiopathic mental retardation. Eur J Hum Genet. 2001 May;9(5):319–327. doi: 10.1038/sj.ejhg.5200591. [DOI] [PubMed] [Google Scholar]
  9. Flint J., Wilkie A. O., Buckle V. J., Winter R. M., Holland A. J., McDermid H. E. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet. 1995 Feb;9(2):132–140. doi: 10.1038/ng0295-132. [DOI] [PubMed] [Google Scholar]
  10. Hollox Edward J., Akrami Seyed M., Armour John A. L. DNA copy number analysis by MAPH: molecular diagnostic applications. Expert Rev Mol Diagn. 2002 Jul;2(4):370–378. doi: 10.1586/14737159.2.4.370. [DOI] [PubMed] [Google Scholar]
  11. Joyce C. A., Dennis N. R., Cooper S., Browne C. E. Subtelomeric rearrangements: results from a study of selected and unselected probands with idiopathic mental retardation and control individuals by using high-resolution G-banding and FISH. Hum Genet. 2001 Oct;109(4):440–451. doi: 10.1007/s004390100588. [DOI] [PubMed] [Google Scholar]
  12. Knight S. J., Flint J. Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet. 2000 Jun;37(6):401–409. doi: 10.1136/jmg.37.6.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knight S. J., Horsley S. W., Regan R., Lawrie N. M., Maher E. J., Cardy D. L., Flint J., Kearney L. Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet. 1997 Jan-Feb;5(1):1–8. [PubMed] [Google Scholar]
  14. Knight S. J., Lese C. M., Precht K. S., Kuc J., Ning Y., Lucas S., Regan R., Brenan M., Nicod A., Lawrie N. M. An optimized set of human telomere clones for studying telomere integrity and architecture. Am J Hum Genet. 2000 Jun 22;67(2):320–332. doi: 10.1086/302998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knight S. J., Regan R., Nicod A., Horsley S. W., Kearney L., Homfray T., Winter R. M., Bolton P., Flint J. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet. 1999 Nov 13;354(9191):1676–1681. doi: 10.1016/S0140-6736(99)03070-6. [DOI] [PubMed] [Google Scholar]
  16. Masuno M., Orii T. Terminal 7q deletion as a cause of holoprosencephaly. Clin Genet. 1990 Mar;37(3):238–238. doi: 10.1111/j.1399-0004.1990.tb03511.x. [DOI] [PubMed] [Google Scholar]
  17. Neubauer A., Neubauer B., Liu E. Polymerase chain reaction based assay to detect allelic loss in human DNA: loss of beta-interferon gene in chronic myelogenous leukemia. Nucleic Acids Res. 1990 Feb 25;18(4):993–998. doi: 10.1093/nar/18.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Riethman H. C., Xiang Z., Paul S., Morse E., Hu X. L., Flint J., Chi H. C., Grady D. L., Moyzis R. K. Integration of telomere sequences with the draft human genome sequence. Nature. 2001 Feb 15;409(6822):948–951. doi: 10.1038/35057180. [DOI] [PubMed] [Google Scholar]
  19. Roessler E., Belloni E., Gaudenz K., Jay P., Berta P., Scherer S. W., Tsui L. C., Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996 Nov;14(3):357–360. doi: 10.1038/ng1196-357. [DOI] [PubMed] [Google Scholar]
  20. Sismani C., Armour J. A., Flint J., Girgalli C., Regan R., Patsalis P. C. Screening for subtelomeric chromosome abnormalities in children with idiopathic mental retardation using multiprobe telomeric FISH and the new MAPH telomeric assay. Eur J Hum Genet. 2001 Jul;9(7):527–532. doi: 10.1038/sj.ejhg.5200670. [DOI] [PubMed] [Google Scholar]
  21. Slavotinek A., Rosenberg M., Knight S., Gaunt L., Fergusson W., Killoran C., Clayton-Smith J., Kingston H., Campbell R. H., Flint J. Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres. J Med Genet. 1999 May;36(5):405–411. [PMC free article] [PubMed] [Google Scholar]
  22. Tosi S., Giudici G., Rambaldi A., Scherer S. W., Bray-Ward P., Dirscherl L., Biondi A., Kearney L. Characterization of the human myeloid leukemia-derived cell line GF-D8 by multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization. Genes Chromosomes Cancer. 1999 Mar;24(3):213–221. [PubMed] [Google Scholar]
  23. Veltman Joris A., Schoenmakers Eric F. P. M., Eussen Bert H., Janssen Irene, Merkx Gerard, van Cleef Brigitte, van Ravenswaaij Conny M., Brunner Han G., Smeets Dominique, van Kessel Ad Geurts. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am J Hum Genet. 2002 Apr 9;70(5):1269–1276. doi: 10.1086/340426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White Stefan, Kalf Margot, Liu Qiang, Villerius Michel, Engelsma Dieuwke, Kriek Marjolein, Vollebregt Ellen, Bakker Bert, van Ommen Gert-Jan B., Breuning Martijn H. Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridization. Am J Hum Genet. 2002 Jul 8;71(2):365–374. doi: 10.1086/341942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wong A. C., Ning Y., Flint J., Clark K., Dumanski J. P., Ledbetter D. H., McDermid H. E. Molecular characterization of a 130-kb terminal microdeletion at 22q in a child with mild mental retardation. Am J Hum Genet. 1997 Jan;60(1):113–120. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES