Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Sep;63(9):3711–3714. doi: 10.1128/iai.63.9.3711-3714.1995

Cytotoxic effects of natural killer cells have no significant role in controlling infection with the intracellular protozoon Eimeria vermiformis.

M E Rose 1, P Hesketh 1, D Wakelin 1
PMCID: PMC173515  PMID: 7642311

Abstract

The course of infection with Eimeria vermiformis in C57BL/6J; NK cell-defective C57BL/6J bg/bg; BALB/c; T-cell-defective BALB/c nu/nu; and T-cell-, B-cell-, and NK cell-defective BALB/c x C57BL/6 scid/scid bg/bg mice was monitored. For young C57BL/6J mice, the bg/bg mutants consistently produced fewer oocysts than the controls; there were no differences between older mice of these strains. Wild-type BALB/c mice were more resistant to infection than the nu/nu and scid/scid bg/bg mutants, but there was no difference between the mutants. Treatment of BALB/c mice with poly(I.C) had no effect on the course of infection. These findings confirm the ineffectiveness of NK cells in this system.

Full Text

The Full Text of this article is available as a PDF (217.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bancroft G. J. The role of natural killer cells in innate resistance to infection. Curr Opin Immunol. 1993 Aug;5(4):503–510. doi: 10.1016/0952-7915(93)90030-v. [DOI] [PubMed] [Google Scholar]
  2. Chen W., Harp J. A., Harmsen A. G., Havell E. A. Gamma interferon functions in resistance to Cryptosporidium parvum infection in severe combined immunodeficient mice. Infect Immun. 1993 Aug;61(8):3548–3551. doi: 10.1128/iai.61.8.3548-3551.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark E. A., Shultz L. D., Pollack S. B. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics. 1981 Mar 1;12(5-6):601–613. doi: 10.1007/BF01561700. [DOI] [PubMed] [Google Scholar]
  4. Denis M. Mouse hypersensitivity pneumonitis: depletion of NK cells abrogates the spontaneous regression phase and leads to massive fibrosis. Exp Lung Res. 1992 Nov-Dec;18(6):761–773. doi: 10.3109/01902149209031706. [DOI] [PubMed] [Google Scholar]
  5. Karlhofer F. M., Ribaudo R. K., Yokoyama W. M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature. 1992 Jul 2;358(6381):66–70. doi: 10.1038/358066a0. [DOI] [PubMed] [Google Scholar]
  6. Lillehoj H. S. Intestinal intraepithelial and splenic natural killer cell responses to eimerian infections in inbred chickens. Infect Immun. 1989 Jul;57(7):1879–1884. doi: 10.1128/iai.57.7.1879-1884.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McDonald V., Bancroft G. J. Mechanisms of innate and acquired resistance to Cryptosporidium parvum infection in SCID mice. Parasite Immunol. 1994 Jun;16(6):315–320. doi: 10.1111/j.1365-3024.1994.tb00354.x. [DOI] [PubMed] [Google Scholar]
  8. Roder J., Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature. 1979 Mar 29;278(5703):451–453. doi: 10.1038/278451a0. [DOI] [PubMed] [Google Scholar]
  9. Rohlman V. C., Kuhls T. L., Mosier D. A., Crawford D. L., Greenfield R. A. Cryptosporidium parvum infection after abrogation of natural killer cell activity in normal and severe combined immunodeficiency mice. J Parasitol. 1993 Apr;79(2):295–297. [PubMed] [Google Scholar]
  10. Rose M. E., Hesketh P. Immunity to coccidiosis: T-lymphocyte- or B-lymphocyte-deficient animals. Infect Immun. 1979 Nov;26(2):630–637. doi: 10.1128/iai.26.2.630-637.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rose M. E., Millard B. J. Eimeria vermiformis: host strains and the developmental cycle. Exp Parasitol. 1985 Dec;60(3):285–293. doi: 10.1016/0014-4894(85)90033-5. [DOI] [PubMed] [Google Scholar]
  12. Rose M. E., Owen D. G., Hesketh P. Susceptibility to coccidiosis: effect of strain of mouse on reproduction of Eimeria vermiformis. Parasitology. 1984 Feb;88(Pt 1):45–54. doi: 10.1017/s0031182000054330. [DOI] [PubMed] [Google Scholar]
  13. Rose M. E., Peppard J. V., Hobbs S. M. Coccidiosis: characterization of antibody responses to infection with Eimeria nieschulzi. Parasite Immunol. 1984 Jan;6(1):1–12. doi: 10.1111/j.1365-3024.1984.tb00777.x. [DOI] [PubMed] [Google Scholar]
  14. Rose M. E., Wakelin D., Hesketh P. Eimeria vermiformis: differences in the course of primary infection can be correlated with lymphocyte responsiveness in the BALB/c and C57BL/6 mouse, Mus musculus. Exp Parasitol. 1990 Oct;71(3):276–283. doi: 10.1016/0014-4894(90)90032-8. [DOI] [PubMed] [Google Scholar]
  15. Rose M. E., Wakelin D., Hesketh P. Gamma interferon controls Eimeria vermiformis primary infection in BALB/c mice. Infect Immun. 1989 May;57(5):1599–1603. doi: 10.1128/iai.57.5.1599-1603.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rose M. E., Wakelin D., Hesketh P. Interferon-gamma-mediated effects upon immunity to coccidial infections in the mouse. Parasite Immunol. 1991 Jan;13(1):63–74. doi: 10.1111/j.1365-3024.1991.tb00263.x. [DOI] [PubMed] [Google Scholar]
  17. Scott P., Trinchieri G. The role of natural killer cells in host-parasite interactions. Curr Opin Immunol. 1995 Feb;7(1):34–40. doi: 10.1016/0952-7915(95)80026-3. [DOI] [PubMed] [Google Scholar]
  18. Shultz L. D., Sidman C. L. Genetically determined murine models of immunodeficiency. Annu Rev Immunol. 1987;5:367–403. doi: 10.1146/annurev.iy.05.040187.002055. [DOI] [PubMed] [Google Scholar]
  19. Smith A. L., Rose M. E., Wakelin D. The role of natural killer cells in resistance to coccidiosis: investigations in a murine model. Clin Exp Immunol. 1994 Aug;97(2):273–279. doi: 10.1111/j.1365-2249.1994.tb06080.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ting C. C., Bluestone J. A., Hargrove M. E., Loh N. N. Expression and function of asialo GM1 in alloreactive cytotoxic T lymphocytes. J Immunol. 1986 Oct 1;137(7):2100–2106. [PubMed] [Google Scholar]
  21. Ungar B. L., Kao T. C., Burris J. A., Finkelman F. D. Cryptosporidium infection in an adult mouse model. Independent roles for IFN-gamma and CD4+ T lymphocytes in protective immunity. J Immunol. 1991 Aug 1;147(3):1014–1022. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES