Abstract
Head and neck squamous cell carcinomas (HNSCC) often metastasise to the cervical lymph nodes. It is known for HNSCC as well as other cancers that progression from normal tissue to primary tumour and finally to metastatic tumour is characterised by an accumulation of genetic mutations. DNA methylation, an epigenetic modification, can result in loss of gene function in cancer, similar to genetic mutations such as deletions and point mutations. We have investigated the DNA methylation phenotypes of both primary HNSCC and metastatic tumours from 13 patients using restriction landmark genomic scanning (RLGS). With this technique, we were able to assess the methylation status of an average of nearly 1300 CpG islands for each tumour. We observed that the number of CpG islands hypermethylated in metastatic tumours is significantly greater than what is found in the primary tumours overall, but not in every patient. Interestingly, the data also clearly show that many loci methylated in a patient's primary tumour are no longer methylated in the metastatic tumour of the same patient. Thus, even though metastatic HNSCC methylate a greater proportion of CpG islands than do the primary tumours, they do so at different subsets of loci. These data show an unanticipated variability in the methylation state of loci in primary and metastatic HNSCCs within the same patient. We discuss two possible explanations for how different epigenetic events might arise between the primary tumour and the metastatic tumour of a person.
Full Text
The Full Text of this article is available as a PDF (579.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akanuma D., Uzawa N., Yoshida M. A., Negishi A., Amagasa T., Ikeuchi T. Inactivation patterns of the p16 (INK4a) gene in oral squamous cell carcinoma cell lines. Oral Oncol. 1999 Sep;35(5):476–483. doi: 10.1016/s1368-8375(99)00020-2. [DOI] [PubMed] [Google Scholar]
- Baylin S. B., Herman J. G., Graff J. R., Vertino P. M., Issa J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–196. [PubMed] [Google Scholar]
- Bazan Viviana, Zanna Ines, Migliavacca Manuela, Sanz-Casla Maria Teresa, Maestro Maria Luisa, Corsale Simona, Macaluso Marcella, Dardanoni Gabriella, Restivo Salvatore, Quintela Paloma López. Prognostic significance of p16INK4a alterations and 9p21 loss of heterozygosity in locally advanced laryngeal squamous cell carcinoma. J Cell Physiol. 2002 Sep;192(3):286–293. doi: 10.1002/jcp.10138. [DOI] [PubMed] [Google Scholar]
- Bird A. P., Wolffe A. P. Methylation-induced repression--belts, braces, and chromatin. Cell. 1999 Nov 24;99(5):451–454. doi: 10.1016/s0092-8674(00)81532-9. [DOI] [PubMed] [Google Scholar]
- Califano J., van der Riet P., Westra W., Nawroz H., Clayman G., Piantadosi S., Corio R., Lee D., Greenberg B., Koch W. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996 Jun 1;56(11):2488–2492. [PubMed] [Google Scholar]
- Costello J. F., Frühwald M. C., Smiraglia D. J., Rush L. J., Robertson G. P., Gao X., Wright F. A., Feramisco J. D., Peltomäki P., Lang J. C. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000 Feb;24(2):132–138. doi: 10.1038/72785. [DOI] [PubMed] [Google Scholar]
- Costello J. F., Plass C. Methylation matters. J Med Genet. 2001 May;38(5):285–303. doi: 10.1136/jmg.38.5.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esteller M., Corn P. G., Baylin S. B., Herman J. G. A gene hypermethylation profile of human cancer. Cancer Res. 2001 Apr 15;61(8):3225–3229. [PubMed] [Google Scholar]
- Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
- Frank C. J., McClatchey K. D., Devaney K. O., Carey T. E. Evidence that loss of chromosome 18q is associated with tumor progression. Cancer Res. 1997 Mar 1;57(5):824–827. [PubMed] [Google Scholar]
- Frühwald M. C., O'Dorisio M. S., Dai Z., Rush L. J., Krahe R., Smiraglia D. J., Pietsch T., Elsea S. H., Plass C. Aberrant hypermethylation of the major breakpoint cluster region in 17p11.2 in medulloblastomas but not supratentorial PNETs. Genes Chromosomes Cancer. 2001 Jan;30(1):38–47. [PubMed] [Google Scholar]
- Frühwald M. C., O'Dorisio M. S., Dai Z., Tanner S. M., Balster D. A., Gao X., Wright F. A., Plass C. Aberrant promoter methylation of previously unidentified target genes is a common abnormality in medulloblastomas--implications for tumor biology and potential clinical utility. Oncogene. 2001 Aug 16;20(36):5033–5042. doi: 10.1038/sj.onc.1204613. [DOI] [PubMed] [Google Scholar]
- Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
- Graff J. R., Gabrielson E., Fujii H., Baylin S. B., Herman J. G. Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem. 2000 Jan 28;275(4):2727–2732. doi: 10.1074/jbc.275.4.2727. [DOI] [PubMed] [Google Scholar]
- Gramza A. W., Lucas J. M., Mountain R. E., Schuller D. E., Lang J. C. Efficient method for preparing normal and tumor tissue for RNA extraction. Biotechniques. 1995 Feb;18(2):228–231. [PubMed] [Google Scholar]
- Hasegawa Masayuki, Nelson Heather H., Peters Edward, Ringstrom Elin, Posner Marshall, Kelsey Karl T. Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene. 2002 Jun 20;21(27):4231–4236. doi: 10.1038/sj.onc.1205528. [DOI] [PubMed] [Google Scholar]
- Herman J. G., Graff J. R., Myöhänen S., Nelkin B. D., Baylin S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiratsuka H., Miyakawa A., Nakamori K., Kido Y., Sunakawa H., Kohama G. Multivariate analysis of occult lymph node metastasis as a prognostic indicator for patients with squamous cell carcinoma of the oral cavity. Cancer. 1997 Aug 1;80(3):351–356. [PubMed] [Google Scholar]
- Nan X., Campoy F. J., Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997 Feb 21;88(4):471–481. doi: 10.1016/s0092-8674(00)81887-5. [DOI] [PubMed] [Google Scholar]
- Nan X., Ng H. H., Johnson C. A., Laherty C. D., Turner B. M., Eisenman R. N., Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998 May 28;393(6683):386–389. doi: 10.1038/30764. [DOI] [PubMed] [Google Scholar]
- Ng H. H., Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999 Apr;9(2):158–163. doi: 10.1016/s0959-437x(99)80024-0. [DOI] [PubMed] [Google Scholar]
- Ogawara K., Miyakawa A., Shiba M., Uzawa K., Watanabe T., Wang X. L., Sato T., Kubosawa H., Kondo Y., Tanzawa H. Allelic loss of chromosome 13q14.3 in human oral cancer: correlation with lymph node metastasis. Int J Cancer. 1998 Aug 21;79(4):312–317. doi: 10.1002/(sici)1097-0215(19980821)79:4<312::aid-ijc2>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
- Okazaki Y., Okuizumi H., Sasaki N., Ohsumi T., Kuromitsu J., Hirota N., Muramatsu M., Hayashizaki Y. An expanded system of restriction landmark genomic scanning (RLGS Ver. 1.8). Electrophoresis. 1995 Feb;16(2):197–202. doi: 10.1002/elps.1150160134. [DOI] [PubMed] [Google Scholar]
- Pande P., Mathur M., Shukla N. K., Ralhan R. Ets-1: a plausible marker of invasive potential and lymph node metastasis in human oral squamous cell carcinomas. J Pathol. 1999 Sep;189(1):40–45. doi: 10.1002/(SICI)1096-9896(199909)189:1<40::AID-PATH405>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Plass C., Weichenhan D., Catanese J., Costello J. F., Yu F., Yu L., Smiraglia D., Cavenee W. K., Caligiuri M. A., deJong P. An arrayed human not I-EcoRV boundary library as a tool for RLGS spot analysis. DNA Res. 1997 Jun 30;4(3):253–255. doi: 10.1093/dnares/4.3.253. [DOI] [PubMed] [Google Scholar]
- Reed A. L., Califano J., Cairns P., Westra W. H., Jones R. M., Koch W., Ahrendt S., Eby Y., Sewell D., Nawroz H. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 1996 Aug 15;56(16):3630–3633. [PubMed] [Google Scholar]
- Riese U., Dahse R., Fiedler W., Theuer C., Koscielny S., Ernst G., Beleites E., Claussen U., von Eggeling F. Tumor suppressor gene p16 (CDKN2A) mutation status and promoter inactivation in head and neck cancer. Int J Mol Med. 1999 Jul;4(1):61–65. doi: 10.3892/ijmm.4.1.61. [DOI] [PubMed] [Google Scholar]
- Rosas S. L., Koch W., da Costa Carvalho M. G., Wu L., Califano J., Westra W., Jen J., Sidransky D. Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res. 2001 Feb 1;61(3):939–942. [PubMed] [Google Scholar]
- Rush L. J., Dai Z., Smiraglia D. J., Gao X., Wright F. A., Frühwald M., Costello J. F., Held W. A., Yu L., Krahe R. Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci. Blood. 2001 May 15;97(10):3226–3233. doi: 10.1182/blood.v97.10.3226. [DOI] [PubMed] [Google Scholar]
- Sanchez-Cespedes M., Esteller M., Wu L., Nawroz-Danish H., Yoo G. H., Koch W. M., Jen J., Herman J. G., Sidransky D. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 2000 Feb 15;60(4):892–895. [PubMed] [Google Scholar]
- Smiraglia D. J., Frühwald M. C., Costello J. F., McCormick S. P., Dai Z., Peltomäki P., O'Dorisio M. S., Cavenee W. K., Plass C. A new tool for the rapid cloning of amplified and hypermethylated human DNA sequences from restriction landmark genome scanning gels. Genomics. 1999 Jun 15;58(3):254–262. doi: 10.1006/geno.1999.5840. [DOI] [PubMed] [Google Scholar]
- Smiraglia Dominic J., Plass Christoph. The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene. 2002 Aug 12;21(35):5414–5426. doi: 10.1038/sj.onc.1205608. [DOI] [PubMed] [Google Scholar]
- Sun P. C., Schmidt A. P., Pashia M. E., Sunwoo J. B., Scholnick S. B. Homozygous deletions define a region of 8p23.2 containing a putative tumor suppressor gene. Genomics. 1999 Dec 1;62(2):184–188. doi: 10.1006/geno.1999.6020. [DOI] [PubMed] [Google Scholar]
- Takebayashi S., Ogawa T., Jung K. Y., Muallem A., Mineta H., Fisher S. G., Grenman R., Carey T. E. Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma. Cancer Res. 2000 Jul 1;60(13):3397–3403. [PubMed] [Google Scholar]
- Vokes E. E., Weichselbaum R. R., Lippman S. M., Hong W. K. Head and neck cancer. N Engl J Med. 1993 Jan 21;328(3):184–194. doi: 10.1056/NEJM199301213280306. [DOI] [PubMed] [Google Scholar]
- Warnecke P. M., Stirzaker C., Melki J. R., Millar D. S., Paul C. L., Clark S. J. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 1997 Nov 1;25(21):4422–4426. doi: 10.1093/nar/25.21.4422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe S., Kawai J., Hirotsune S., Suzuki H., Hirose K., Taga C., Ozawa N., Fushiki S., Hayashizaki Y. Accessibility to tissue-specific genes from methylation profiles of mouse brain genomic DNA. Electrophoresis. 1995 Feb;16(2):218–226. doi: 10.1002/elps.1150160137. [DOI] [PubMed] [Google Scholar]