Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2003 Oct;40(10):733–740. doi: 10.1136/jmg.40.10.733

Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype

M G de Silva 1, K Elliott 1, H Dahl 1, E Fitzpatrick 1, S Wilcox 1, M Delatycki 1, R Williamson 1, D Efron 1, M Lynch 1, S Forrest 1
PMCID: PMC1735283  PMID: 14569117

Abstract

Background: Attention deficit hyperactivity disorder (ADHD) is a complex condition with high heritability. However, both biochemical investigations and association and linkage studies have failed to define fully the underlying genetic factors associated with ADHD. We have identified a family co-segregating an early onset behavioural/developmental condition, with features of ADHD and intellectual disability, with a pericentric inversion of chromosome 3, 46N inv(3)(p14:q21).

Methods: We hypothesised that the inversion breakpoints affect a gene or genes that cause the observed phenotype. Large genomic clones (P1 derived/yeast/bacterial artificial chromosomes) were assembled into contigs across the two inversion breakpoints using molecular and bioinformatic technologies. Restriction fragments crossing the junctions were identified by Southern analysis and these fragments were amplified using inverse PCR.

Results: The amplification products were subsequently sequenced to reveal that the breakpoints lay within an intron of the dedicator of cytokinesis 3 (DOCK3) gene at the p arm breakpoint, and an intron of a novel member of the solute carrier family 9 (sodium/hydrogen exchanger) isoform 9 (SLC9A9) at the q arm. Both genes are expressed in the brain, but neither of the genes has previously been implicated in developmental or behavioural disorders.

Conclusion: These two disrupted genes are candidates for involvement in the pathway leading to the neuropsychological condition in this family.

Full Text

The Full Text of this article is available as a PDF (697.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbelivien A., Ruotsalainen S., Sirviö J. Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder. Cereb Cortex. 2001 Nov;11(11):1056–1063. doi: 10.1093/cercor/11.11.1056. [DOI] [PubMed] [Google Scholar]
  2. Cardinal R. N., Pennicott D. R., Sugathapala C. L., Robbins T. W., Everitt B. J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 2001 May 24;292(5526):2499–2501. doi: 10.1126/science.1060818. [DOI] [PubMed] [Google Scholar]
  3. Chen Q., Yoshida H., Schubert D., Maher P., Mallory M., Masliah E. Presenilin binding protein is associated with neurofibrillary alterations in Alzheimer's disease and stimulates tau phosphorylation. Am J Pathol. 2001 Nov;159(5):1597–1602. doi: 10.1016/S0002-9440(10)63005-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crisponi L., Deiana M., Loi A., Chiappe F., Uda M., Amati P., Bisceglia L., Zelante L., Nagaraja R., Porcu S. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001 Feb;27(2):159–166. doi: 10.1038/84781. [DOI] [PubMed] [Google Scholar]
  5. Efron D., Delatycki M. B., de Silva M. G., Langbein A., Slaghuis W., Larson A., Dahl H-H M., Forrest S. M. A novel pericentric inversion of chromosome 3 cosegregates with a developmental-behavioural phenotype. J Med Genet. 2003 Feb;40(2):E15–E15. doi: 10.1136/jmg.40.2.e15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erickson M. R., Galletta B. J., Abmayr S. M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol. 1997 Aug 11;138(3):589–603. doi: 10.1083/jcb.138.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Fisher Simon E., Francks Clyde, McCracken James T., McGough James J., Marlow Angela J., MacPhie I. Laurence, Newbury Dianne F., Crawford Lori R., Palmer Christina G. S., Woodward J. Arthur. A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet. 2002 Mar 28;70(5):1183–1196. doi: 10.1086/340112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukui Y., Hashimoto O., Sanui T., Oono T., Koga H., Abe M., Inayoshi A., Noda M., Oike M., Shirai T. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature. 2001 Aug 23;412(6849):826–831. doi: 10.1038/35090591. [DOI] [PubMed] [Google Scholar]
  10. Gu X. Q., Yao H., Haddad G. G. Increased neuronal excitability and seizures in the Na(+)/H(+) exchanger null mutant mouse. Am J Physiol Cell Physiol. 2001 Aug;281(2):C496–C503. doi: 10.1152/ajpcell.2001.281.2.C496. [DOI] [PubMed] [Google Scholar]
  11. Hasegawa H., Kiyokawa E., Tanaka S., Nagashima K., Gotoh N., Shibuya M., Kurata T., Matsuda M. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996 Apr;16(4):1770–1776. doi: 10.1128/mcb.16.4.1770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heng H. H., Tsui L. C. FISH detection on DAPI-banded chromosomes. Methods Mol Biol. 1994;33:35–49. doi: 10.1385/0-89603-280-9:35. [DOI] [PubMed] [Google Scholar]
  13. Kashiwa A., Yoshida H., Lee S., Paladino T., Liu Y., Chen Q., Dargusch R., Schubert D., Kimura H. Isolation and characterization of novel presenilin binding protein. J Neurochem. 2000 Jul;75(1):109–116. doi: 10.1046/j.1471-4159.2000.0750109.x. [DOI] [PubMed] [Google Scholar]
  14. Kiyokawa E., Hashimoto Y., Kobayashi S., Sugimura H., Kurata T., Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998 Nov 1;12(21):3331–3336. doi: 10.1101/gad.12.21.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lehmann R. Cell migration in invertebrates: clues from border and distal tip cells. Curr Opin Genet Dev. 2001 Aug;11(4):457–463. doi: 10.1016/s0959-437x(00)00217-3. [DOI] [PubMed] [Google Scholar]
  16. Mackay D. J., Hall A. Rho GTPases. J Biol Chem. 1998 Aug 14;273(33):20685–20688. doi: 10.1074/jbc.273.33.20685. [DOI] [PubMed] [Google Scholar]
  17. Martin Neilson, Scourfield Jane, McGuffin Peter. Observer effects and heritability of childhood attention-deficit hyperactivity disorder symptoms. Br J Psychiatry. 2002 Mar;180:260–265. doi: 10.1192/bjp.180.3.260. [DOI] [PubMed] [Google Scholar]
  18. Nishihara H., Kobayashi S., Hashimoto Y., Ohba F., Mochizuki N., Kurata T., Nagashima K., Matsuda M. Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins. Biochim Biophys Acta. 1999 Nov 11;1452(2):179–187. doi: 10.1016/s0167-4889(99)00133-0. [DOI] [PubMed] [Google Scholar]
  19. Nolan K. M., Barrett K., Lu Y., Hu K. Q., Vincent S., Settleman J. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 1998 Nov 1;12(21):3337–3342. doi: 10.1101/gad.12.21.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Numata M., Orlowski J. Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem. 2001 Feb 26;276(20):17387–17394. doi: 10.1074/jbc.M101319200. [DOI] [PubMed] [Google Scholar]
  21. Numata M., Petrecca K., Lake N., Orlowski J. Identification of a mitochondrial Na+/H+ exchanger. J Biol Chem. 1998 Mar 20;273(12):6951–6959. doi: 10.1074/jbc.273.12.6951. [DOI] [PubMed] [Google Scholar]
  22. Orlowski J., Grinstein S. Na+/H+ exchangers of mammalian cells. J Biol Chem. 1997 Sep 5;272(36):22373–22376. doi: 10.1074/jbc.272.36.22373. [DOI] [PubMed] [Google Scholar]
  23. Reddien P. W., Horvitz H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol. 2000 Mar;2(3):131–136. doi: 10.1038/35004000. [DOI] [PubMed] [Google Scholar]
  24. Spalletta G., Pasini A., Pau F., Guido G., Menghini L., Caltagirone C. Prefrontal blood flow dysregulation in drug naive ADHD children without structural abnormalities. J Neural Transm (Vienna) 2001;108(10):1203–1216. doi: 10.1007/s007020170010. [DOI] [PubMed] [Google Scholar]
  25. Thapar A., Holmes J., Poulton K., Harrington R. Genetic basis of attention deficit and hyperactivity. Br J Psychiatry. 1999 Feb;174:105–111. doi: 10.1192/bjp.174.2.105. [DOI] [PubMed] [Google Scholar]
  26. Wakabayashi S., Shigekawa M., Pouyssegur J. Molecular physiology of vertebrate Na+/H+ exchangers. Physiol Rev. 1997 Jan;77(1):51–74. doi: 10.1152/physrev.1997.77.1.51. [DOI] [PubMed] [Google Scholar]
  27. Webber L. M., Garson O. M. Fluorodeoxyuridine synchronization of bone marrow cultures. Cancer Genet Cytogenet. 1983 Feb;8(2):123–132. doi: 10.1016/0165-4608(83)90044-4. [DOI] [PubMed] [Google Scholar]
  28. Wolfe M. S., Haass C. The Role of presenilins in gamma-secretase activity. J Biol Chem. 2000 Dec 29;276(8):5413–5416. doi: 10.1074/jbc.R000026200. [DOI] [PubMed] [Google Scholar]
  29. Wu Y. C., Horvitz H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature. 1998 Apr 2;392(6675):501–504. doi: 10.1038/33163. [DOI] [PubMed] [Google Scholar]
  30. Yun C. H., Tse C. M., Nath S. K., Levine S. A., Brant S. R., Donowitz M. Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol. 1995 Jul;269(1 Pt 1):G1–11. doi: 10.1152/ajpgi.1995.269.1.G1. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Figures 2 and 4]
jmedgene_40_10_733__1.pdf (138.4KB, pdf)
jmedgene_40_10_733__2.pdf (102.3KB, pdf)

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES