Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Oct;63(10):3765–3771. doi: 10.1128/iai.63.10.3765-3771.1995

Human T-cell activation by 14- and 18-kilodalton nuclear proteins of Leishmania infantum.

I Suffia 1, J F Quaranta 1, M C Eulalio 1, B Ferrua 1, P Marty 1, Y Le Fichoux 1, J Kubar 1
PMCID: PMC173529  PMID: 7558278

Abstract

Leishmanial antigens which stimulate T lymphocytes from primed individuals may be candidates for a vaccine. We recently found a significant concordance between the humoral response specific for two proteins from Leishmania infantum promastigotes, p14 and p18, and a positive leishmanin delayed-type hypersensitivity reaction, testifying to the occurrence of cell-mediated immunity. In this communication, we describe a partial characterization of these antigens and an in vitro analysis of their capacity to activate primed human T cells. We showed, by immunofluorescent staining and through analysis of subcellular fractions by Western immunoblotting, that in stationary-phase promastigotes, p14 and p18 were located only in the parasite nuclei; in the middle of the log phase, a transitory and only weak expression outside the nucleus was detected. We then showed that p14 and p18 antigens shared a common epitope(s). Finally, we analyzed the in vitro proliferation and interleukin-2 production induced by leishmanial proteins in human peripheral blood mononuclear cells from sensitized subjects. We showed that in some individuals who have been exposed to L. infantum the specific response to the whole lysate was mostly due to the nuclear antigens. We demonstrated directly the capacity of nitrocellulose-bound p14 and p18 to activate in vitro all of the tested primed peripheral blood mononuclear cells, which contrasted with a lack of stimulatory activity of other membrane-bound leishmanial proteins. Taken together, our results suggest that an antigenic determinant(s) dominant for some individuals might exist on both antigens.

Full Text

The Full Text of this article is available as a PDF (554.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates P. A. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology. 1994 Jan;108(Pt 1):1–9. doi: 10.1017/s0031182000078458. [DOI] [PubMed] [Google Scholar]
  2. Bretscher P. A., Wei G., Menon J. N., Bielefeldt-Ohmann H. Establishment of stable, cell-mediated immunity that makes "susceptible" mice resistant to Leishmania major. Science. 1992 Jul 24;257(5069):539–542. doi: 10.1126/science.1636090. [DOI] [PubMed] [Google Scholar]
  3. Descoteaux A., Turco S. J. The lipophosphoglycan of Leishmania and macrophage protein kinase C. Parasitol Today. 1993 Dec;9(12):468–471. doi: 10.1016/0169-4758(93)90105-o. [DOI] [PubMed] [Google Scholar]
  4. Ferrua B., Aussel C., Fehlmann M. Human interleukin 2. Detection at the picomolar level by sandwich enzyme immunoassay. J Immunol Methods. 1987 Mar 12;97(2):215–220. doi: 10.1016/0022-1759(87)90462-5. [DOI] [PubMed] [Google Scholar]
  5. Handman E., Goding J. W. The Leishmania receptor for macrophages is a lipid-containing glycoconjugate. EMBO J. 1985 Feb;4(2):329–336. doi: 10.1002/j.1460-2075.1985.tb03633.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L., Locksley R. M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989 Jan 1;169(1):59–72. doi: 10.1084/jem.169.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heinzel F. P., Sadick M. D., Mutha S. S., Locksley R. M. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7011–7015. doi: 10.1073/pnas.88.16.7011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hinterberger M., Pettersson I., Steitz J. A. Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs. J Biol Chem. 1983 Feb 25;258(4):2604–2613. [PubMed] [Google Scholar]
  9. Jardim A., Alexander J., Teh H. S., Ou D., Olafson R. W. Immunoprotective Leishmania major synthetic T cell epitopes. J Exp Med. 1990 Aug 1;172(2):645–648. doi: 10.1084/jem.172.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jardim A., Tolson D. L., Turco S. J., Pearson T. W., Olafson R. W. The Leishmania donovani lipophosphoglycan T lymphocyte-reactive component is a tightly associated protein complex. J Immunol. 1991 Nov 15;147(10):3538–3544. [PubMed] [Google Scholar]
  11. Karp C. L., el-Safi S. H., Wynn T. A., Satti M. M., Kordofani A. M., Hashim F. A., Hag-Ali M., Neva F. A., Nutman T. B., Sacks D. L. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest. 1993 Apr;91(4):1644–1648. doi: 10.1172/JCI116372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaye P. M., Curry A. J., Blackwell J. M. Differential production of Th1- and Th2-derived cytokines does not determine the genetically controlled or vaccine-induced rate of cure in murine visceral leishmaniasis. J Immunol. 1991 Apr 15;146(8):2763–2770. [PubMed] [Google Scholar]
  13. Kemp M., Kurtzhals J. A., Bendtzen K., Poulsen L. K., Hansen M. B., Koech D. K., Kharazmi A., Theander T. G. Leishmania donovani-reactive Th1- and Th2-like T-cell clones from individuals who have recovered from visceral leishmaniasis. Infect Immun. 1993 Mar;61(3):1069–1073. doi: 10.1128/iai.61.3.1069-1073.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kemp M., Kurtzhals J. A., Christensen C. B., Kharazmi A., Jardim A., Bendtzen K., Gachihi G. S., Olafson R. W., Theander T. G. Production of interferon-gamma and interleukin-4 by human T cells recognizing Leishmania lipophosphoglycan-associated protein. Immunol Lett. 1993 Oct;38(2):137–144. doi: 10.1016/0165-2478(93)90179-6. [DOI] [PubMed] [Google Scholar]
  15. Kemp M., Kurtzhals J. A., Kharazmi A., Theander T. G. Dichotomy in the human CD4+ T-cell response to Leishmania parasites. APMIS. 1994 Feb;102(2):81–88. [PubMed] [Google Scholar]
  16. Marty P., Le Fichoux Y., Pratlong F., Gari-Toussaint M. Human visceral leishmaniasis in Alpes-Maritimes, France: epidemiological characteristics for the period 1985-1992. Trans R Soc Trop Med Hyg. 1994 Jan-Feb;88(1):33–34. doi: 10.1016/0035-9203(94)90485-5. [DOI] [PubMed] [Google Scholar]
  17. Marty P., Lelievre A., Quaranta J. F., Rahal A., Gari-Toussaint M., Le Fichoux Y. Use of the leishmanin skin test and western blot analysis for epidemiological studies in visceral leishmaniasis areas: experience in a highly endemic focus in Alpes-Maritimes (France). Trans R Soc Trop Med Hyg. 1994 Nov-Dec;88(6):658–659. doi: 10.1016/0035-9203(94)90214-3. [DOI] [PubMed] [Google Scholar]
  18. Mary C., Lamouroux D., Dunan S., Quilici M. Western blot analysis of antibodies to Leishmania infantum antigens: potential of the 14-kD and 16-kD antigens for diagnosis and epidemiologic purposes. Am J Trop Med Hyg. 1992 Dec;47(6):764–771. doi: 10.4269/ajtmh.1992.47.764. [DOI] [PubMed] [Google Scholar]
  19. Melby P. C., Neva F. A., Sacks D. L. Profile of human T cell response to leishmanial antigens. Analysis by immunoblotting. J Clin Invest. 1989 Jun;83(6):1868–1875. doi: 10.1172/JCI114093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mougneau E., Altare F., Wakil A. E., Zheng S., Coppola T., Wang Z. E., Waldmann R., Locksley R. M., Glaichenhaus N. Expression cloning of a protective Leishmania antigen. Science. 1995 Apr 28;268(5210):563–566. doi: 10.1126/science.7725103. [DOI] [PubMed] [Google Scholar]
  21. Oosterwegel M., van de Wetering M., Dooijes D., Klomp L., Winoto A., Georgopoulos K., Meijlink F., Clevers H. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med. 1991 May 1;173(5):1133–1142. doi: 10.1084/jem.173.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reed S. G., Carvalho E. M., Sherbert C. H., Sampaio D. P., Russo D. M., Bacelar O., Pihl D. L., Scott J. M., Barral A., Grabstein K. H. In vitro responses to Leishmania antigens by lymphocytes from patients with leishmaniasis or Chagas' disease. J Clin Invest. 1990 Mar;85(3):690–696. doi: 10.1172/JCI114493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reed S. G., Scott P. T-cell and cytokine responses in leishmaniasis. Curr Opin Immunol. 1993 Aug;5(4):524–531. doi: 10.1016/0952-7915(93)90033-o. [DOI] [PubMed] [Google Scholar]
  24. Reiner S. L. Parasites and T helper cell development: some insights. Parasitol Today. 1994 Dec;10(12):485–488. doi: 10.1016/0169-4758(94)90162-7. [DOI] [PubMed] [Google Scholar]
  25. Russell D. G., Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunol. 1986 Apr 1;136(7):2613–2620. [PubMed] [Google Scholar]
  26. Russo D. M., Burns J. M., Jr, Carvalho E. M., Armitage R. J., Grabstein K. H., Button L. L., McMaster W. R., Reed S. G. Human T cell responses to gp63, a surface antigen of Leishmania. J Immunol. 1991 Nov 15;147(10):3575–3580. [PubMed] [Google Scholar]
  27. Russo D. M., Jardim A., Carvalho E. M., Sleath P. R., Armitage R. J., Olafson R. W., Reed S. G. Mapping human T cell epitopes in leishmania gp63. Identification of cross-reactive and species-specific epitopes. J Immunol. 1993 Feb 1;150(3):932–939. [PubMed] [Google Scholar]
  28. Russo D. M., Turco S. J., Burns J. M., Jr, Reed S. G. Stimulation of human T lymphocytes by Leishmania lipophosphoglycan-associated proteins. J Immunol. 1992 Jan 1;148(1):202–207. [PubMed] [Google Scholar]
  29. Sacks D. L., Hieny S., Sher A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. 1985 Jul;135(1):564–569. [PubMed] [Google Scholar]
  30. Sacks D. L., Perkins P. V. Identification of an infective stage of Leishmania promastigotes. Science. 1984 Mar 30;223(4643):1417–1419. doi: 10.1126/science.6701528. [DOI] [PubMed] [Google Scholar]
  31. Sacks D. L., da Silva R. P. The generation of infective stage Leishmania major promastigotes is associated with the cell-surface expression and release of a developmentally regulated glycolipid. J Immunol. 1987 Nov 1;139(9):3099–3106. [PubMed] [Google Scholar]
  32. Scott P., Natovitz P., Coffman R. L., Pearce E., Sher A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med. 1988 Nov 1;168(5):1675–1684. doi: 10.1084/jem.168.5.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scott P., Natovitz P., Sher A. B lymphocytes are required for the generation of T cells that mediate healing of cutaneous leishmaniasis. J Immunol. 1986 Aug 1;137(3):1017–1021. [PubMed] [Google Scholar]
  34. Sher A., Coffman R. L. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol. 1992;10:385–409. doi: 10.1146/annurev.iy.10.040192.002125. [DOI] [PubMed] [Google Scholar]
  35. Soto M., Requena J. M., Morales G., Alonso C. The Leishmania infantum histone H3 possesses an extremely divergent N-terminal domain. Biochim Biophys Acta. 1994 Oct 18;1219(2):533–535. doi: 10.1016/0167-4781(94)90082-5. [DOI] [PubMed] [Google Scholar]
  36. Westgeest A. A., Bons J. C., Van den Brink H. G., Aarden L. A., Smeenk R. J. An improved incubation apparatus for Western blots used for the detection of antinuclear antibodies. J Immunol Methods. 1986 Dec 24;95(2):283–288. doi: 10.1016/0022-1759(86)90417-5. [DOI] [PubMed] [Google Scholar]
  37. Yang D. M., Rogers M. V., Liew F. Y. Identification and characterization of host-protective T-cell epitopes of a major surface glycoprotein (gp63) from Leishmania major. Immunology. 1991 Jan;72(1):3–9. [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES