Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2003 Nov;40(11):797–801. doi: 10.1136/jmg.40.11.797

Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith–Wiedemann syndrome

N Diaz-Meyer 1, C Day 1, K Khatod 1, E Maher 1, W Cooper 1, W Reik 1, C Junien 1, G Graham 1, E Algar 1, V M Der Kaloustian 1, M Higgins 1
PMCID: PMC1735305  PMID: 14627666

Abstract

Context: Beckwith–Wiedemann syndrome (BWS) arises by several genetic and epigenetic mechanisms affecting the balance of imprinted gene expression in chromosome 11p15.5. The most frequent alteration associated with BWS is the absence of methylation at the maternal allele of KvDMR1, an intronic CpG island within the KCNQ1 gene. Targeted deletion of KvDMR1 suggests that this locus is an imprinting control region (ICR) that regulates multiple genes in 11p15.5. Cell culture based enhancer blocking assays indicate that KvDMR1 may function as a methylation modulated chromatin insulator and/or silencer.

Objective: To determine the potential consequence of loss of methylation (LOM) at KvDMR1 in the development of BWS.

Methods: The steady state levels of CDKN1C gene expression in fibroblast cells from normal individuals, and from persons with BWS who have LOM at KvDMR1, was determined by both real time quantitative polymerase chain reaction (qPCR) and ribonuclease protection assay (RPA). Methylation of the CDKN1C promoter region was assessed by Southern hybridisation using a methylation sensitive restriction endonuclease.

Results: Both qPCR and RPA clearly demonstrated a marked decrease (86–93%) in the expression level of the CDKN1C gene in cells derived from patients with BWS, who had LOM at KvDMR1. Southern analysis indicated that downregulation of CDKN1C in these patients was not associated with hypermethylation at the presumptive CDKN1C promoter.

Conclusions: An epimutation at KvDMR1, the absence of maternal methylation, causes the aberrant silencing of CDKN1C, some 180 kb away on the maternal chromosome. Similar to mutations at this locus, this silencing may give rise to BWS.

Full Text

The Full Text of this article is available as a PDF (363.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algar E., Brickell S., Deeble G., Amor D., Smith P. Analysis of CDKN1C in Beckwith Wiedemann syndrome. Hum Mutat. 2000;15(6):497–508. doi: 10.1002/1098-1004(200006)15:6<497::AID-HUMU2>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  2. Bliek J., Maas S. M., Ruijter J. M., Hennekam R. C., Alders M., Westerveld A., Mannens M. M. Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Genet. 2001 Mar 1;10(5):467–476. doi: 10.1093/hmg/10.5.467. [DOI] [PubMed] [Google Scholar]
  3. Bourc'his D., Xu G. L., Lin C. S., Bollman B., Bestor T. H. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001 Nov 22;294(5551):2536–2539. doi: 10.1126/science.1065848. [DOI] [PubMed] [Google Scholar]
  4. Caspary T., Cleary M. A., Perlman E. J., Zhang P., Elledge S. J., Tilghman S. M. Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev. 1999 Dec 1;13(23):3115–3124. doi: 10.1101/gad.13.23.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung W. Y., Yuan L., Feng L., Hensle T., Tycko B. Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms' tumors. Hum Mol Genet. 1996 Aug;5(8):1101–1108. doi: 10.1093/hmg/5.8.1101. [DOI] [PubMed] [Google Scholar]
  6. DeBaun Michael R., Niemitz Emily L., McNeil D. Elizabeth, Brandenburg Sheri A., Lee Maxwell P., Feinberg Andrew P. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet. 2002 Jan 28;70(3):604–611. doi: 10.1086/338934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Du Minjie, Beatty Linda G., Zhou Wenjing, Lew Jocelyne, Schoenherr Christopher, Weksberg Rosanna, Sadowski Paul D. Insulator and silencer sequences in the imprinted region of human chromosome 11p15.5. Hum Mol Genet. 2003 Aug 1;12(15):1927–1939. doi: 10.1093/hmg/ddg194. [DOI] [PubMed] [Google Scholar]
  8. Eggenschwiler J., Ludwig T., Fisher P., Leighton P. A., Tilghman S. M., Efstratiadis A. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev. 1997 Dec 1;11(23):3128–3142. doi: 10.1101/gad.11.23.3128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engel J. R., Smallwood A., Harper A., Higgins M. J., Oshimura M., Reik W., Schofield P. N., Maher E. R. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. J Med Genet. 2000 Dec;37(12):921–926. doi: 10.1136/jmg.37.12.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fitzpatrick Galina V., Soloway Paul D., Higgins Michael J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet. 2002 Sep 9;32(3):426–431. doi: 10.1038/ng988. [DOI] [PubMed] [Google Scholar]
  11. Gabriel J. M., Higgins M. J., Gebuhr T. C., Shows T. B., Saitoh S., Nicholls R. D. A model system to study genomic imprinting of human genes. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14857–14862. doi: 10.1073/pnas.95.25.14857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatada I., Ohashi H., Fukushima Y., Kaneko Y., Inoue M., Komoto Y., Okada A., Ohishi S., Nabetani A., Morisaki H. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996 Oct;14(2):171–173. doi: 10.1038/ng1096-171. [DOI] [PubMed] [Google Scholar]
  13. Horike S., Mitsuya K., Meguro M., Kotobuki N., Kashiwagi A., Notsu T., Schulz T. C., Shirayoshi Y., Oshimura M. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum Mol Genet. 2000 Sep 1;9(14):2075–2083. doi: 10.1093/hmg/9.14.2075. [DOI] [PubMed] [Google Scholar]
  14. Joyce J. A., Lam W. K., Catchpoole D. J., Jenks P., Reik W., Maher E. R., Schofield P. N. Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum Mol Genet. 1997 Sep;6(9):1543–1548. doi: 10.1093/hmg/6.9.1543. [DOI] [PubMed] [Google Scholar]
  15. Kanduri Chandrasekhar, Fitzpatrick Galina, Mukhopadhyay Rituparna, Kanduri Meena, Lobanenkov Victor, Higgins Michael, Ohlsson Rolf. A differentially methylated imprinting control region within the Kcnq1 locus harbors a methylation-sensitive chromatin insulator. J Biol Chem. 2002 Mar 4;277(20):18106–18110. doi: 10.1074/jbc.M200031200. [DOI] [PubMed] [Google Scholar]
  16. Kikuchi Takefumi, Toyota Minoru, Itoh Fumio, Suzuki Hiromu, Obata Toshiro, Yamamoto Hiroyuki, Kakiuchi Hideki, Kusano Masanobu, Issa Jean-Pierre J., Tokino Takashi. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene. 2002 Apr 18;21(17):2741–2749. doi: 10.1038/sj.onc.1205376. [DOI] [PubMed] [Google Scholar]
  17. Lam W. W., Hatada I., Ohishi S., Mukai T., Joyce J. A., Cole T. R., Donnai D., Reik W., Schofield P. N., Maher E. R. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet. 1999 Jul;36(7):518–523. [PMC free article] [PubMed] [Google Scholar]
  18. Lee M. P., DeBaun M. R., Mitsuya K., Galonek H. L., Brandenburg S., Oshimura M., Feinberg A. P. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5203–5208. doi: 10.1073/pnas.96.9.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee M. P., DeBaun M., Randhawa G., Reichard B. A., Elledge S. J., Feinberg A. P. Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am J Hum Genet. 1997 Aug;61(2):304–309. doi: 10.1086/514858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A., Tilghman S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995 May 4;375(6526):34–39. doi: 10.1038/375034a0. [DOI] [PubMed] [Google Scholar]
  21. Li M., Squire J. A., Weksberg R. Molecular genetics of Wiedemann-Beckwith syndrome. Am J Med Genet. 1998 Oct 2;79(4):253–259. [PubMed] [Google Scholar]
  22. Li Yinghua, Nagai Hirokazu, Ohno Toshihito, Yuge Masaaki, Hatano Sonoko, Ito Etsuro, Mori Naoyoshi, Saito Hidehiko, Kinoshita Tomohiro. Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood. 2002 Oct 1;100(7):2572–2577. doi: 10.1182/blood-2001-11-0026. [DOI] [PubMed] [Google Scholar]
  23. Maher E. R., Reik W. Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J Clin Invest. 2000 Feb;105(3):247–252. doi: 10.1172/JCI9340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mancini-DiNardo Debora, Steele Scott J. S., Ingram Robert S., Tilghman Shirley M. A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum Mol Genet. 2003 Feb 1;12(3):283–294. doi: 10.1093/hmg/ddg024. [DOI] [PubMed] [Google Scholar]
  25. Mitsuya K., Meguro M., Lee M. P., Katoh M., Schulz T. C., Kugoh H., Yoshida M. A., Niikawa N., Feinberg A. P., Oshimura M. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet. 1999 Jul;8(7):1209–1217. doi: 10.1093/hmg/8.7.1209. [DOI] [PubMed] [Google Scholar]
  26. Morison I. M., Reeve A. E. A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet. 1998;7(10):1599–1609. doi: 10.1093/hmg/7.10.1599. [DOI] [PubMed] [Google Scholar]
  27. O'Keefe D., Dao D., Zhao L., Sanderson R., Warburton D., Weiss L., Anyane-Yeboa K., Tycko B. Coding mutations in p57KIP2 are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms tumors. Am J Hum Genet. 1997 Aug;61(2):295–303. doi: 10.1086/514854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Plath Kathrin, Mlynarczyk-Evans Susanna, Nusinow Dmitri A., Panning Barbara. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002 Jun 11;36:233–278. doi: 10.1146/annurev.genet.36.042902.092433. [DOI] [PubMed] [Google Scholar]
  29. Ravenel J. D., Broman K. W., Perlman E. J., Niemitz E. L., Jayawardena T. M., Bell D. W., Haber D. A., Uejima H., Feinberg A. P. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J Natl Cancer Inst. 2001 Nov 21;93(22):1698–1703. doi: 10.1093/jnci/93.22.1698. [DOI] [PubMed] [Google Scholar]
  30. Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
  31. Sleutels Frank, Zwart Ronald, Barlow Denise P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002 Feb 14;415(6873):810–813. doi: 10.1038/415810a. [DOI] [PubMed] [Google Scholar]
  32. Smilinich N. J., Day C. D., Fitzpatrick G. V., Caldwell G. M., Lossie A. C., Cooper P. R., Smallwood A. C., Joyce J. A., Schofield P. N., Reik W. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8064–8069. doi: 10.1073/pnas.96.14.8064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sun F. L., Dean W. L., Kelsey G., Allen N. D., Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature. 1997 Oct 23;389(6653):809–815. doi: 10.1038/39797. [DOI] [PubMed] [Google Scholar]
  34. Takahashi K., Nakayama K., Nakayama K. Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation. J Biochem. 2000 Jan;127(1):73–83. doi: 10.1093/oxfordjournals.jbchem.a022586. [DOI] [PubMed] [Google Scholar]
  35. Thakur Noopur, Kanduri Meena, Holmgren Claes, Mukhopadhyay Rituparna, Kanduri Chandrasekhar. Bidirectional silencing and DNA methylation-sensitive methylation-spreading properties of the Kcnq1 imprinting control region map to the same regions. J Biol Chem. 2003 Jan 2;278(11):9514–9519. doi: 10.1074/jbc.M212203200. [DOI] [PubMed] [Google Scholar]
  36. Tokino T., Urano T., Furuhata T., Matsushima M., Miyatsu T., Sasaki S., Nakamura Y. Characterization of the human p57KIP2 gene: alternative splicing, insertion/deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis. Hum Genet. 1996 May;97(5):625–631. doi: 10.1007/BF02281873. [DOI] [PubMed] [Google Scholar]
  37. Weksberg R., Nishikawa J., Caluseriu O., Fei Y. L., Shuman C., Wei C., Steele L., Cameron J., Smith A., Ambus I. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet. 2001 Dec 15;10(26):2989–3000. doi: 10.1093/hmg/10.26.2989. [DOI] [PubMed] [Google Scholar]
  38. Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
  39. Weksberg Rosanna, Shuman Cheryl, Caluseriu Oana, Smith Adam C., Fei Yan-Ling, Nishikawa Joy, Stockley Tracy L., Best Lyle, Chitayat David, Olney Ann. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet. 2002 May 15;11(11):1317–1325. doi: 10.1093/hmg/11.11.1317. [DOI] [PubMed] [Google Scholar]
  40. Yan Y., Frisén J., Lee M. H., Massagué J., Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 1997 Apr 15;11(8):973–983. doi: 10.1101/gad.11.8.973. [DOI] [PubMed] [Google Scholar]
  41. Zhang P., Liégeois N. J., Wong C., Finegold M., Hou H., Thompson J. C., Silverman A., Harper J. W., DePinho R. A., Elledge S. J. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature. 1997 May 8;387(6629):151–158. doi: 10.1038/387151a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES