Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2003 Apr;40(4):262–267. doi: 10.1136/jmg.40.4.262

Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts

E Nandrot 1, C Slingsby 1, A Basak 1, M Cherif-Chefchaoun 1, B Benazzouz 1, Y Hajaji 1, S Boutayeb 1, O Gribouval 1, L Arbogast 1, A Berraho 1, M Abitbol 1, L Hilal 1
PMCID: PMC1735438  PMID: 12676897

Abstract

Congenital cataracts are a major cause of bilateral visual impairment in childhood. We mapped the gene responsible for autosomal congenital cerulean cataracts to chromosome 2q33–35 in a four generation family of Moroccan descent. The maximum lod score (7.19 at recombination fraction θ=0) was obtained for marker D2S2208 near the γ-crystallin gene (CRYG) cluster. Sequencing of the coding regions of the CRYGA, B, C, and D genes showed the presence of a heterozygous C>A transversion in exon 2 of CRYGD that is associated with cataracts in this family. This mutation resulted in a proline to threonine substitution at amino acid 23 of the protein in the first of the four Greek key motifs that characterise this protein. We show that although the x ray crystallography modelling does not indicate any change of the backbone conformation, the mutation affects a region of the Greek key motif that is important for determining the topology of this protein fold. Our data suggest strongly that the proline to threonine substitution may alter the protein folding or decrease the thermodynamic stability or solubility of the protein. Furthermore, this is the first report of a mutation in this gene resulting in autosomal dominant congenital cerulean cataracts.

Full Text

The Full Text of this article is available as a PDF (472.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armitage M. M., Kivlin J. D., Ferrell R. E. A progressive early onset cataract gene maps to human chromosome 17q24. Nat Genet. 1995 Jan;9(1):37–40. doi: 10.1038/ng0195-37. [DOI] [PubMed] [Google Scholar]
  2. Bateman J. B., Geyer D. D., Flodman P., Johannes M., Sikela J., Walter N., Moreira A. T., Clancy K., Spence M. A. A new betaA1-crystallin splice junction mutation in autosomal dominant cataract. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3278–3285. [PubMed] [Google Scholar]
  3. Berry V., Francis P., Kaushal S., Moore A., Bhattacharya S. Missense mutations in MIP underlie autosomal dominant 'polymorphic' and lamellar cataracts linked to 12q. Nat Genet. 2000 May;25(1):15–17. doi: 10.1038/75538. [DOI] [PubMed] [Google Scholar]
  4. Berry V., Francis P., Reddy M. A., Collyer D., Vithana E., MacKay I., Dawson G., Carey A. H., Moore A., Bhattacharya S. S. Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet. 2001 Sep 27;69(5):1141–1145. doi: 10.1086/324158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bodker F. S., Lavery M. A., Mitchell T. N., Lovrien E. W., Maumenee I. H. Microphthalmos in the presumed homozygous offspring of a first cousin marriage and linkage analysis of a locus in a family with autosomal dominant cerulean congenital cataracts. Am J Med Genet. 1990 Sep;37(1):54–59. doi: 10.1002/ajmg.1320370113. [DOI] [PubMed] [Google Scholar]
  6. Brakenhoff R. H., Aarts H. J., Reek F. H., Lubsen N. H., Schoenmakers J. G. Human gamma-crystallin genes. A gene family on its way to extinction. J Mol Biol. 1990 Dec 5;216(3):519–532. doi: 10.1016/0022-2836(90)90380-5. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  8. Bu Lei, Jin Yiping, Shi Yuefeng, Chu Renyuan, Ban Airong, Eiberg Hans, Andres Lisa, Jiang Haisong, Zheng Guangyong, Qian Meiqian. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet. 2002 Jun 24;31(3):276–278. doi: 10.1038/ng921. [DOI] [PubMed] [Google Scholar]
  9. Chirgadze Y. N., Driessen H. P., Wright G., Slingsby C., Hay R. E., Lindley P. F. Structure of bovine eye lens gammaD (gammaIIIb)-crystallin at 1.95 A. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):712–721. doi: 10.1107/S0907444996000352. [DOI] [PubMed] [Google Scholar]
  10. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  11. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  12. Conley Y. P., Erturk D., Keverline A., Mah T. S., Keravala A., Barnes L. R., Bruchis A., Hess J. F., FitzGerald P. G., Weeks D. E. A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am J Hum Genet. 2000 Mar 22;66(4):1426–1431. doi: 10.1086/302871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
  14. Francis P. J., Berry V., Bhattacharya S. S., Moore A. T. The genetics of childhood cataract. J Med Genet. 2000 Jul;37(7):481–488. doi: 10.1136/jmg.37.7.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Francis P., Chung J. J., Yasui M., Berry V., Moore A., Wyatt M. K., Wistow G., Bhattacharya S. S., Agre P. Functional impairment of lens aquaporin in two families with dominantly inherited cataracts. Hum Mol Genet. 2000 Sep 22;9(15):2329–2334. doi: 10.1093/oxfordjournals.hmg.a018925. [DOI] [PubMed] [Google Scholar]
  16. Fu Ling, Liang Jack J. N. Conformational change and destabilization of cataract gammaC-crystallin T5P mutant. FEBS Lett. 2002 Feb 27;513(2-3):213–216. doi: 10.1016/s0014-5793(02)02313-x. [DOI] [PubMed] [Google Scholar]
  17. Gill D., Klose R., Munier F. L., McFadden M., Priston M., Billingsley G., Ducrey N., Schorderet D. F., Héon E. Genetic heterogeneity of the Coppock-like cataract: a mutation in CRYBB2 on chromosome 22q11.2. Invest Ophthalmol Vis Sci. 2000 Jan;41(1):159–165. [PubMed] [Google Scholar]
  18. Graw J. Cataract mutations and lens development. Prog Retin Eye Res. 1999 Mar;18(2):235–267. doi: 10.1016/s1350-9462(98)00018-4. [DOI] [PubMed] [Google Scholar]
  19. Graw J. Cataract mutations as a tool for developmental geneticists. Ophthalmic Res. 1996;28 (Suppl 1):8–18. doi: 10.1159/000267936. [DOI] [PubMed] [Google Scholar]
  20. Graw J., Löster J., Soewarto D., Fuchs H., Meyer B., Reis A., Wolf E., Balling R., Hrabé de Angelis M. Characterization of a new, dominant V124E mutation in the mouse alphaA-crystallin-encoding gene. Invest Ophthalmol Vis Sci. 2001 Nov;42(12):2909–2915. [PubMed] [Google Scholar]
  21. Graw J. The crystallins: genes, proteins and diseases. Biol Chem. 1997 Nov;378(11):1331–1348. [PubMed] [Google Scholar]
  22. Graw Jochen, Klopp Norman, Neuhäuser-Klaus Angelika, Favor Jack, Löster Jana. Crygf(Rop): the first mutation in the Crygf gene causing a unique radial lens opacity. Invest Ophthalmol Vis Sci. 2002 Sep;43(9):2998–3002. [PubMed] [Google Scholar]
  23. He W., Li S. Congenital cataracts: gene mapping. Hum Genet. 2000 Jan;106(1):1–13. doi: 10.1007/s004390051002. [DOI] [PubMed] [Google Scholar]
  24. Hejtmancik J. F. The genetics of cataract: our vision becomes clearer. Am J Hum Genet. 1998 Mar;62(3):520–525. doi: 10.1086/301774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hilal Latifa, Nandrot Emeline, Belmekki Mohamed, Chefchaouni Mohamed, El Bacha Siham, Benazzouz Bouchra, Hajaji Yassir, Gribouval Olivier, Dufier Jean, Abitbol Marc. Evidence of clinical and genetic heterogeneity in autosomal dominant congenital cerulean cataracts. Ophthalmic Genet. 2002 Dec;23(4):199–208. doi: 10.1076/opge.23.4.199.13881. [DOI] [PubMed] [Google Scholar]
  26. Hulsebos T. J., Cerosaletti K. M., Fournier R. E., Sinke R. J., Rocchi M., Marzella R., Jenkins N. A., Gilbert D. J., Copeland N. G. Identification of the human beta A2 crystallin gene (CRYBA2): localization of the gene on human chromosome 2 and of the homologous gene on mouse chromosome 1. Genomics. 1995 Aug 10;28(3):543–548. doi: 10.1006/geno.1995.1186. [DOI] [PubMed] [Google Scholar]
  27. Héon E., Liu S., Billingsley G., Bernasconi O., Tsilfidis C., Schorderet D. F., Munier F. L., Tsifildis C. Gene localization for aculeiform cataract, on chromosome 2q33-35. Am J Hum Genet. 1998 Sep;63(3):921–926. doi: 10.1086/302005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Héon E., Priston M., Schorderet D. F., Billingsley G. D., Girard P. O., Lubsen N., Munier F. L. The gamma-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet. 1999 Nov;65(5):1261–1267. doi: 10.1086/302619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ionides A., Berry V., Mackay D., Shiels A., Bhattacharya S., Moore A. Anterior polar cataract: clinical spectrum and genetic linkage in a single family. Eye (Lond) 1998;12(Pt 2):224–226. doi: 10.1038/eye.1998.53. [DOI] [PubMed] [Google Scholar]
  30. Jaenicke R., Slingsby C. Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol. 2001;36(5):435–499. doi: 10.1080/20014091074237. [DOI] [PubMed] [Google Scholar]
  31. Jakobs P. M., Hess J. F., FitzGerald P. G., Kramer P., Weleber R. G., Litt M. Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am J Hum Genet. 2000 Mar 16;66(4):1432–1436. doi: 10.1086/302872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kramer P., Yount J., Mitchell T., LaMorticella D., Carrero-Valenzuela R., Lovrien E., Maumenee I., Litt M. A second gene for cerulean cataracts maps to the beta crystallin region on chromosome 22. Genomics. 1996 Aug 1;35(3):539–542. doi: 10.1006/geno.1996.0395. [DOI] [PubMed] [Google Scholar]
  33. Lambert S. R., Drack A. V. Infantile cataracts. Surv Ophthalmol. 1996 May-Jun;40(6):427–458. doi: 10.1016/s0039-6257(96)82011-x. [DOI] [PubMed] [Google Scholar]
  34. Lathrop G. M., Lalouel J. M. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984 Mar;36(2):460–465. [PMC free article] [PubMed] [Google Scholar]
  35. Litt M., Carrero-Valenzuela R., LaMorticella D. M., Schultz D. W., Mitchell T. N., Kramer P., Maumenee I. H. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet. 1997 May;6(5):665–668. doi: 10.1093/hmg/6.5.665. [DOI] [PubMed] [Google Scholar]
  36. Lubsen N. H., Renwick J. H., Tsui L. C., Breitman M. L., Schoenmakers J. G. A locus for a human hereditary cataract is closely linked to the gamma-crystallin gene family. Proc Natl Acad Sci U S A. 1987 Jan;84(2):489–492. doi: 10.1073/pnas.84.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mackay D., Ionides A., Kibar Z., Rouleau G., Berry V., Moore A., Shiels A., Bhattacharya S. Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet. 1999 May;64(5):1357–1364. doi: 10.1086/302383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mackay Donna S., Boskovska Olivera B., Knopf Harry L. S., Lampi Kirsten J., Shiels Alan. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet. 2002 Oct 1;71(5):1216–1221. doi: 10.1086/344212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Norledge B. V., Trinkl S., Jaenicke R., Slingsby C. The X-ray structure of a mutant eye lens beta B2-crystallin with truncated sequence extensions. Protein Sci. 1997 Aug;6(8):1612–1620. doi: 10.1002/pro.5560060802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pande A., Pande J., Asherie N., Lomakin A., Ogun O., King J. A., Lubsen N. H., Walton D., Benedek G. B. Molecular basis of a progressive juvenile-onset hereditary cataract. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):1993–1998. doi: 10.1073/pnas.040554397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pande A., Pande J., Asherie N., Lomakin A., Ogun O., King J., Benedek G. B. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6116–6120. doi: 10.1073/pnas.101124798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Polyakov A. V., Shagina I. A., Khlebnikova O. V., Evgrafov O. V. Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin Genet. 2001 Dec;60(6):476–478. doi: 10.1034/j.1399-0004.2001.600614.x. [DOI] [PubMed] [Google Scholar]
  43. Rees M. I., Watts P., Fenton I., Clarke A., Snell R. G., Owen M. J., Gray J. Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet. 2000 Feb;106(2):206–209. doi: 10.1007/s004390051029. [DOI] [PubMed] [Google Scholar]
  44. Ren Z., Li A., Shastry B. S., Padma T., Ayyagari R., Scott M. H., Parks M. M., Kaiser-Kupfer M. I., Hejtmancik J. F. A 5-base insertion in the gammaC-crystallin gene is associated with autosomal dominant variable zonular pulverulent cataract. Hum Genet. 2000 May;106(5):531–537. doi: 10.1007/s004390000289. [DOI] [PubMed] [Google Scholar]
  45. Rogaev E. I., Rogaeva E. A., Korovaitseva G. I., Farrer L. A., Petrin A. N., Keryanov S. A., Turaeva S., Chumakov I., St George-Hyslop P., Ginter E. K. Linkage of polymorphic congenital cataract to the gamma-crystallin gene locus on human chromosome 2q33-35. Hum Mol Genet. 1996 May;5(5):699–703. doi: 10.1093/hmg/5.5.699. [DOI] [PubMed] [Google Scholar]
  46. Russell P., Meakin S. O., Hohman T. C., Tsui L. C., Breitman M. L. Relationship between proteins encoded by three human gamma-crystallin genes and distinct polypeptides in the eye lens. Mol Cell Biol. 1987 Sep;7(9):3320–3323. doi: 10.1128/mcb.7.9.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Santhiya S. T., Shyam Manohar M., Rawlley D., Vijayalakshmi P., Namperumalsamy P., Gopinath P. M., Löster J., Graw J. Novel mutations in the gamma-crystallin genes cause autosomal dominant congenital cataracts. J Med Genet. 2002 May;39(5):352–358. doi: 10.1136/jmg.39.5.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Scott M. H., Hejtmancik J. F., Wozencraft L. A., Reuter L. M., Parks M. M., Kaiser-Kupfer M. I. Autosomal dominant congenital cataract. Interocular phenotypic variability. Ophthalmology. 1994 May;101(5):866–871. doi: 10.1016/s0161-6420(94)31246-2. [DOI] [PubMed] [Google Scholar]
  49. Semina E. V., Ferrell R. E., Mintz-Hittner H. A., Bitoun P., Alward W. L., Reiter R. S., Funkhauser C., Daack-Hirsch S., Murray J. C. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet. 1998 Jun;19(2):167–170. doi: 10.1038/527. [DOI] [PubMed] [Google Scholar]
  50. Shiels A., Mackay D., Ionides A., Berry V., Moore A., Bhattacharya S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q. Am J Hum Genet. 1998 Mar;62(3):526–532. doi: 10.1086/301762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Shiloh Y., Donlon T., Bruns G., Breitman M. L., Tsui L. C. Assignment of the human gamma-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q33-36. Hum Genet. 1986 May;73(1):17–19. doi: 10.1007/BF00292656. [DOI] [PubMed] [Google Scholar]
  52. Slingsby C., Clout N. J. Structure of the crystallins. Eye (Lond) 1999 Jun;13(Pt 3B):395–402. doi: 10.1038/eye.1999.113. [DOI] [PubMed] [Google Scholar]
  53. Stephan D. A., Gillanders E., Vanderveen D., Freas-Lutz D., Wistow G., Baxevanis A. D., Robbins C. M., VanAuken A., Quesenberry M. I., Bailey-Wilson J. Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1008–1012. doi: 10.1073/pnas.96.3.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vanita, Sarhadi V., Reis A., Jung M., Singh D., Sperling K., Singh J. R., Bürger J. A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet. 2001 Jun;38(6):392–396. doi: 10.1136/jmg.38.6.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Vanita, Singh J. R., Sarhadi V. K., Singh D., Reis A., Rueschendorf F., Becker-Follmann J., Jung M., Sperling K. A novel form of "central pouchlike" cataract, with sutural opacities, maps to chromosome 15q21-22. Am J Hum Genet. 2000 Dec 21;68(2):509–514. doi: 10.1086/318189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wistow G. J., Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem. 1988;57:479–504. doi: 10.1146/annurev.bi.57.070188.002403. [DOI] [PubMed] [Google Scholar]
  57. van Rens G. L., de Jong W. W., Bloemendal H. A superfamily in the mammalian eye lens: the beta/gamma-crystallins. Mol Biol Rep. 1992 Feb;16(1):1–10. doi: 10.1007/BF00788747. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES