Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2003 May;40(5):325–332. doi: 10.1136/jmg.40.5.325

Disruption of the neuronal PAS3 gene in a family affected with schizophrenia

D Kamnasaran 1, W Muir 1, M Ferguson-Smith 1, D Cox 1
PMCID: PMC1735455  PMID: 12746393

Abstract

Schizophrenia and its subtypes are part of a complex brain disorder with multiple postulated aetiologies. There is evidence that this common disease is genetically heterogeneous, with many loci involved. In this report, we describe a mother and daughter affected with schizophrenia, who are carriers of a t(9;14)(q34;q13) chromosome. By mapping on flow sorted aberrant chromosomes isolated from lymphoblast cell lines, both subjects were found to have a translocation breakpoint junction between the markers D14S730 and D14S70, a 683 kb interval on chromosome 14q13. This interval was found to contain the neuronal PAS3 gene (NPAS3), by annotating the genomic sequence for ESTs and performing RACE and cDNA library screenings. The NPAS3 gene was characterised with respect to the genomic structure, human expression profile, and protein cellular localisation to gain insight into gene function. The translocation breakpoint junction lies within the third intron of NPAS3, resulting in the disruption of the coding potential. The fact that the bHLH and PAS domains are disrupted from the remaining parts of the encoded protein suggests that the DNA binding and dimerisation functions of this protein are destroyed. The daughter (proband), who is more severely affected, has an additional microdeletion in the second intron of NPAS3. On chromosome 9q34, the translocation breakpoint junction was defined between D9S752 and D9S972 and no genes were found to be disrupted. We propose that haploinsufficiency of NPAS3 contributes to the cause of mental illness in this family.

Full Text

The Full Text of this article is available as a PDF (392.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron M. Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet. 2001 Jan 17;68(2):299–312. doi: 10.1086/318212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blouin J. L., Dombroski B. A., Nath S. K., Lasseter V. K., Wolyniec P. S., Nestadt G., Thornquist M., Ullrich G., McGrath J., Kasch L. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet. 1998 Sep;20(1):70–73. doi: 10.1038/1734. [DOI] [PubMed] [Google Scholar]
  3. Breedveld Guido J., van Dongen Jeroen W. F., Danesino Cesare, Guala Andrea, Percy Alan K., Dure Leon S., Harper Peter, Lazarou Lazarus P., van der Linde Herma, Joosse Marijke. Mutations in TITF-1 are associated with benign hereditary chorea. Hum Mol Genet. 2002 Apr 15;11(8):971–979. doi: 10.1093/hmg/11.8.971. [DOI] [PubMed] [Google Scholar]
  4. Brunskill E. W., Witte D. P., Shreiner A. B., Potter S. S. Characterization of npas3, a novel basic helix-loop-helix PAS gene expressed in the developing mouse nervous system. Mech Dev. 1999 Nov;88(2):237–241. doi: 10.1016/s0925-4773(99)00182-3. [DOI] [PubMed] [Google Scholar]
  5. Chiu Y. F., McGrath J. A., Thornquist M. H., Wolyniec P. S., Nestadt G., Swartz K. L., Lasseter V. K., Liang K. Y., Pulver A. E. Genetic heterogeneity in schizophrenia II: conditional analyses of affected schizophrenia sibling pairs provide evidence for an interaction between markers on chromosome 8p and 14q. Mol Psychiatry. 2002;7(6):658–664. doi: 10.1038/sj.mp.4001045. [DOI] [PubMed] [Google Scholar]
  6. Chrast R., Scott H. S., Madani R., Huber L., Wolfer D. P., Prinz M., Aguzzi A., Lipp H. P., Antonarakis S. E. Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Hum Mol Genet. 2000 Jul 22;9(12):1853–1864. doi: 10.1093/hmg/9.12.1853. [DOI] [PubMed] [Google Scholar]
  7. Cook P. J., Robson E. B., Buckton K. E., Slaughter C. A., Gray J. E., Blank C. E., James F. E., Ridler M. A., Insley J., Hultén M. Segregation of ABO, AK1 and ACONs in families with abnormalities of chromosome 9. Ann Hum Genet. 1978 Jan;41(3):365–377. doi: 10.1111/j.1469-1809.1978.tb01904.x. [DOI] [PubMed] [Google Scholar]
  8. Cox Carol J., Espinoza Herbert M., McWilliams Bryan, Chappell Kimberly, Morton Lisa, Hjalt Tord A., Semina Elena V., Amendt Brad A. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem. 2002 Apr 10;277(28):25001–25010. doi: 10.1074/jbc.M201737200. [DOI] [PubMed] [Google Scholar]
  9. Craddock N., Lendon C. Chromosome Workshop: chromosomes 11, 14, and 15. Am J Med Genet. 1999 Jun 18;88(3):244–254. [PubMed] [Google Scholar]
  10. Crews S. T. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 1998 Mar 1;12(5):607–620. doi: 10.1101/gad.12.5.607. [DOI] [PubMed] [Google Scholar]
  11. Crews S. T., Fan C. M. Remembrance of things PAS: regulation of development by bHLH-PAS proteins. Curr Opin Genet Dev. 1999 Oct;9(5):580–587. doi: 10.1016/s0959-437x(99)00003-9. [DOI] [PubMed] [Google Scholar]
  12. Das Parimal, Stockton David W., Bauer Christopher, Shaffer Lisa G., D'Souza Rena N., Wright TimothyJ, Patel Pragna I. Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum Genet. 2002 Mar 14;110(4):371–376. doi: 10.1007/s00439-002-0699-1. [DOI] [PubMed] [Google Scholar]
  13. Garcia J. A., Zhang D., Estill S. J., Michnoff C., Rutter J., Reick M., Scott K., Diaz-Arrastia R., McKnight S. L. Impaired cued and contextual memory in NPAS2-deficient mice. Science. 2000 Jun 23;288(5474):2226–2230. doi: 10.1126/science.288.5474.2226. [DOI] [PubMed] [Google Scholar]
  14. Geschwind D. H., Loginov M., Stern J. M. Identification of a locus on chromosome 14q for idiopathic basal ganglia calcification (Fahr disease). Am J Hum Genet. 1999 Sep;65(3):764–772. doi: 10.1086/302558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goff D. C., Heckers S., Freudenreich O. Schizophrenia. Med Clin North Am. 2001 May;85(3):663–689. doi: 10.1016/s0025-7125(05)70335-7. [DOI] [PubMed] [Google Scholar]
  16. Kamnasaran D., O'Brien P. C., Schuffenhauer S., Quarrell O., Lupski J. R., Grammatico P., Ferguson-Smith M. A., Cox D. W. Defining the breakpoints of proximal chromosome 14q rearrangements in nine patients using flow-sorted chromosomes. Am J Med Genet. 2001 Aug 1;102(2):173–182. doi: 10.1002/ajmg.1418. [DOI] [PubMed] [Google Scholar]
  17. Krude Heiko, Schütz Barbara, Biebermann Heike, von Moers Arpad, Schnabel Dirk, Neitzel Heidi, Tönnies Holger, Weise Dagmar, Lafferty Antony, Schwarz Siegfried. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest. 2002 Feb;109(4):475–480. doi: 10.1172/JCI14341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liang K. Y., Chiu Y. F., Beaty T. H., Wjst M. Multipoint analysis using affected sib pairs: incorporating linkage evidence from unlinked regions. Genet Epidemiol. 2001 Sep;21(2):105–122. doi: 10.1002/gepi.1021. [DOI] [PubMed] [Google Scholar]
  19. Lichtermann D., Karbe E., Maier W. The genetic epidemiology of schizophrenia and of schizophrenia spectrum disorders. Eur Arch Psychiatry Clin Neurosci. 2000;250(6):304–310. doi: 10.1007/s004060070005. [DOI] [PubMed] [Google Scholar]
  20. Mohn A. R., Gainetdinov R. R., Caron M. G., Koller B. H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999 Aug 20;98(4):427–436. doi: 10.1016/s0092-8674(00)81972-8. [DOI] [PubMed] [Google Scholar]
  21. Moises H. W., Yang L., Kristbjarnarson H., Wiese C., Byerley W., Macciardi F., Arolt V., Blackwood D., Liu X., Sjögren B. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet. 1995 Nov;11(3):321–324. doi: 10.1038/ng1195-321. [DOI] [PubMed] [Google Scholar]
  22. Park J. P., Moeschler J. B., Berg S. Z., Wurster-Hill D. H. Schizophrenia and mental retardation in an adult male with a de novo interstitial deletion 9(q32q34.1). J Med Genet. 1991 Apr;28(4):282–283. doi: 10.1136/jmg.28.4.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ramelli G. P., Remonda L., Lövblad K. O., Hirsiger H., Moser H. Abnormal myelination in a patient with deletion 14q11.2q13.1. Pediatr Neurol. 2000 Aug;23(2):170–172. doi: 10.1016/s0887-8994(00)00169-7. [DOI] [PubMed] [Google Scholar]
  24. Reick M., Garcia J. A., Dudley C., McKnight S. L. NPAS2: an analog of clock operative in the mammalian forebrain. Science. 2001 Jul 5;293(5529):506–509. doi: 10.1126/science.1060699. [DOI] [PubMed] [Google Scholar]
  25. Riley B. P., Tahir E., Rajagopalan S., Mogudi-Carter M., Fauré S., Weissenbach J., Jenkins T., Williamson R. A linkage study of the N-methyl-D-aspartate receptor subunit gene loci and schizophrenia in southern African Bantu-speaking families. Psychiatr Genet. 1997 Summer;7(2):57–74. doi: 10.1097/00041444-199722000-00002. [DOI] [PubMed] [Google Scholar]
  26. Robins L. N., Helzer J. E., Weissman M. M., Orvaschel H., Gruenberg E., Burke J. D., Jr, Regier D. A. Lifetime prevalence of specific psychiatric disorders in three sites. Arch Gen Psychiatry. 1984 Oct;41(10):949–958. doi: 10.1001/archpsyc.1984.01790210031005. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES