Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Oct;63(10):3904–3913. doi: 10.1128/iai.63.10.3904-3913.1995

Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut.

K E Shroff 1, K Meslin 1, J J Cebra 1
PMCID: PMC173549  PMID: 7558298

Abstract

We have employed a germfree mouse model to study the development and persistence of a humoral mucosal immune response to a gram-negative murine commensal organism, Morganella morganii. M. morganii bacteria rapidly colonize the gut, resulting in hypertrophy of Peyer's patches (PP), including germinal center reactions (GCR), and the development of specific immunoglobulin A (IgA) responses detected in vitro in PP fragment cultures and by ELISPOT assays of lamina propria cells. The GCR peaks 14 days after infection and begins to wane thereafter. Upon colonization, the organisms successfully translocate to the mesenteric lymph node and spleen, but the number of translocating bacteria begins to drop with the onset of a specific IgA response. A clonal B-cell microculture technique was used to determine the frequency of specific IgA plasmablasts and IgA memory cells. The frequencies of preplasmablasts were seen to be higher in the earlier stages of germinal center development, whereas the frequencies of antigen-specific memory cells appeared to remain at a relatively constant level even after 193 days postmonoassociation. We suggest that a successful secretory IgA response can attenuate chronic stimulation of GCR even though the bacteria persist in the gut. The observed developing hyporesponsiveness to a chronically present commensal organism may be relevant to the use of bacterial vectors for mucosal immunization.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berek C., Berger A., Apel M. Maturation of the immune response in germinal centers. Cell. 1991 Dec 20;67(6):1121–1129. doi: 10.1016/0092-8674(91)90289-b. [DOI] [PubMed] [Google Scholar]
  2. Berg R. D., Savage D. C. Immune responses of specific pathogen-free and gnotobiotic mice to antigens of indigenous and nonindigenous microorganisms. Infect Immun. 1975 Feb;11(2):320–329. doi: 10.1128/iai.11.2.320-329.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown A. R., Crandall C. A. A phosphorylcholine idiotype related to TEPC 15 in mice infected with Ascaris suum. J Immunol. 1976 Apr;116(4):1105–1109. [PubMed] [Google Scholar]
  4. Butcher E. C., Rouse R. V., Coffman R. L., Nottenburg C. N., Hardy R. R., Weissman I. L. Surface phenotype of Peyer's patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J Immunol. 1982 Dec;129(6):2698–2707. [PubMed] [Google Scholar]
  5. Carter P. B., Pollard M. Host responses to "normal" microbial flora in germ-free mice. J Reticuloendothel Soc. 1971 Jun;9(6):580–587. [PubMed] [Google Scholar]
  6. Claflin J. L., Rudikoff S. Uniformity in a clonal repertoire: a case for a germ-line basis of antibody diversity. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):725–734. doi: 10.1101/sqb.1977.041.01.083. [DOI] [PubMed] [Google Scholar]
  7. Coico R. F., Bhogal B. S., Thorbecke G. J. Relationship of germinal centers in lymphoid tissue to immunologic memory. VI. Transfer of B cell memory with lymph node cells fractionated according to their receptors for peanut agglutinin. J Immunol. 1983 Nov;131(5):2254–2257. [PubMed] [Google Scholar]
  8. Curtiss R., 3rd, Kelly S. M., Hassan J. O. Live oral avirulent Salmonella vaccines. Vet Microbiol. 1993 Nov;37(3-4):397–405. doi: 10.1016/0378-1135(93)90038-9. [DOI] [PubMed] [Google Scholar]
  9. Cárdenas L., Clements J. D. Development of mucosal protection against the heat-stable enterotoxin (ST) of Escherichia coli by oral immunization with a genetic fusion delivered by a bacterial vector. Infect Immun. 1993 Nov;61(11):4629–4636. doi: 10.1128/iai.61.11.4629-4636.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DUBOS R., SCHAEDLER R. W., COSTELLO R., HOET P. INDIGENOUS, NORMAL, AND AUTOCHTHONOUS FLORA OF THE GASTROINTESTINAL TRACT. J Exp Med. 1965 Jul 1;122:67–76. doi: 10.1084/jem.122.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dahlgren U. I., Wold A. E., Hanson L. A., Midtvedt T. Expression of a dietary protein in E. coli renders it strongly antigenic to gut lymphoid tissue. Immunology. 1991 Aug;73(4):394–397. [PMC free article] [PubMed] [Google Scholar]
  12. Fubara E. S., Freter R. Source and protective function of coproantibodies in intestinal disease. Am J Clin Nutr. 1972 Dec;25(12):1357–1363. doi: 10.1093/ajcn/25.12.1357. [DOI] [PubMed] [Google Scholar]
  13. Fuller K. A., Kanagawa O., Nahm M. H. T cells within germinal centers are specific for the immunizing antigen. J Immunol. 1993 Nov 1;151(9):4505–4512. [PubMed] [Google Scholar]
  14. George A., Cebra J. J. Responses of single germinal-center B cells in T-cell-dependent microculture. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):11–15. doi: 10.1073/pnas.88.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerritse K., Posno M., Schellekens M. M., Boersma W. J., Claassen E. Oral administration of TNP-Lactobacillus conjugates in mice: a model for evaluation of mucosal and systemic immune responses and memory formation elicited by transformed lactobacilli. Res Microbiol. 1990 Sep-Oct;141(7-8):955–962. doi: 10.1016/0923-2508(90)90135-d. [DOI] [PubMed] [Google Scholar]
  16. Kaye J., Porcelli S., Tite J., Jones B., Janeway C. A., Jr Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. 1983 Sep 1;158(3):836–856. doi: 10.1084/jem.158.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lebman D. A., Griffin P. M., Cebra J. J. Relationship between expression of IgA by Peyer's patch cells and functional IgA memory cells. J Exp Med. 1987 Nov 1;166(5):1405–1418. doi: 10.1084/jem.166.5.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levine M. M., Hone D., Tacket C., Ferreccio C., Cryz S. Clinical and field trials with attenuated Salmonella typhi as live oral vaccines and as "carrier" vaccines. Res Microbiol. 1990 Sep-Oct;141(7-8):807–816. doi: 10.1016/0923-2508(90)90114-6. [DOI] [PubMed] [Google Scholar]
  19. Logan A. C., Chow K. P., George A., Weinstein P. D., Cebra J. J. Use of Peyer's patch and lymph node fragment cultures to compare local immune responses to Morganella morganii. Infect Immun. 1991 Mar;59(3):1024–1031. doi: 10.1128/iai.59.3.1024-1031.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacLennan I. C., Liu Y. J., Johnson G. D. Maturation and dispersal of B-cell clones during T cell-dependent antibody responses. Immunol Rev. 1992 Apr;126:143–161. doi: 10.1111/j.1600-065x.1992.tb00635.x. [DOI] [PubMed] [Google Scholar]
  21. Matsumoto R., Matsumoto M., Mita S., Hitoshi Y., Ando M., Araki S., Yamaguchi N., Tominaga A., Takatsu K. Interleukin-5 induces maturation but not class switching of surface IgA-positive B cells into IgA-secreting cells. Immunology. 1989 Jan;66(1):32–38. [PMC free article] [PubMed] [Google Scholar]
  22. Mattioli C. A., Tomasi T. B., Jr The life span of IgA plasma cells from the mouse intestine. J Exp Med. 1973 Aug 1;138(2):452–460. doi: 10.1084/jem.138.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miller J. S., Quarles J. M. Flow cytometric identification of microorganisms by dual staining with FITC and PI. Cytometry. 1990;11(6):667–675. doi: 10.1002/cyto.990110603. [DOI] [PubMed] [Google Scholar]
  24. Moreau M. C., Ducluzeau R., Guy-Grand D., Muller M. C. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun. 1978 Aug;21(2):532–539. doi: 10.1128/iai.21.2.532-539.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Muller C. P. Mucosal vaccines: high-tech reagents for low-tech immunization. Immunol Today. 1994 Oct;15(10):458–459. doi: 10.1016/0167-5699(94)90188-0. [DOI] [PubMed] [Google Scholar]
  26. Murakami M., Tsubata T., Shinkura R., Nisitani S., Okamoto M., Yoshioka H., Usui T., Miyawaki S., Honjo T. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse. J Exp Med. 1994 Jul 1;180(1):111–121. doi: 10.1084/jem.180.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pollard M., Sharon N. Responses of the Peyer's Patches in Germ-Free Mice to Antigenic Stimulation. Infect Immun. 1970 Jul;2(1):96–100. doi: 10.1128/iai.2.1.96-100.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Potter M. Antigen-binding myeloma proteins in mice. Ann N Y Acad Sci. 1971 Dec 31;190:306–321. doi: 10.1111/j.1749-6632.1971.tb13543.x. [DOI] [PubMed] [Google Scholar]
  29. Pozzi G., Oggioni M. R., Manganelli R., Fischetti V. A. Expression of M6 protein gene of Streptococcus pyogenes in Streptococcus gordonii after chromosomal integration and transcriptional fusion. Res Microbiol. 1992 Jun;143(5):449–457. doi: 10.1016/0923-2508(92)90090-b. [DOI] [PubMed] [Google Scholar]
  30. Rose M. L., Birbeck M. S., Wallis V. J., Forrester J. A., Davies A. J. Peanut lectin binding properties of germinal centres of mouse lymphoid tissue. Nature. 1980 Mar 27;284(5754):364–366. doi: 10.1038/284364a0. [DOI] [PubMed] [Google Scholar]
  31. SCHAEDLER R. W., DUBOS R., COSTELLO R. THE DEVELOPMENT OF THE BACTERIAL FLORA IN THE GASTROINTESTINAL TRACT OF MICE. J Exp Med. 1965 Jul 1;122:59–66. doi: 10.1084/jem.122.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. SCHAEDLER R. W., DUBS R., COSTELLO R. ASSOCIATION OF GERMFREE MICE WITH BACTERIA ISOLATED FROM NORMAL MICE. J Exp Med. 1965 Jul 1;122:77–82. doi: 10.1084/jem.122.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schrader C. E., George A., Kerlin R. L., Cebra J. J. Dendritic cells support production of IgA and other non-IgM isotypes in clonal microculture. Int Immunol. 1990;2(6):563–570. doi: 10.1093/intimm/2.6.563. [DOI] [PubMed] [Google Scholar]
  34. Shaw R. D., Merchant A. A., Groene W. S., Cheng E. H. Persistence of intestinal antibody response to heterologous rotavirus infection in a murine model beyond 1 year. J Clin Microbiol. 1993 Feb;31(2):188–191. doi: 10.1128/jcm.31.2.188-191.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spalding D. M., Koopman W. J., Eldridge J. H., McGhee J. R., Steinman R. M. Accessory cells in murine Peyer's patch. I. Identification and enrichment of a functional dendritic cell. J Exp Med. 1983 May 1;157(5):1646–1659. doi: 10.1084/jem.157.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sterzl J. Gnotobiological models and methods in immunology. Folia Microbiol (Praha) 1979;24(1):58–69. doi: 10.1007/BF02927245. [DOI] [PubMed] [Google Scholar]
  37. Stocker B. A. Aromatic-dependent Salmonella as live vaccine presenters of foreign epitopes as inserts in flagellin. Res Microbiol. 1990 Sep-Oct;141(7-8):787–796. doi: 10.1016/0923-2508(90)90112-4. [DOI] [PubMed] [Google Scholar]
  38. Szakal A. K., Tew J. G. Significance of iccosomes in the germinal centre reaction. Res Immunol. 1991 Mar-Apr;142(3):261–263. doi: 10.1016/0923-2494(91)90072-q. [DOI] [PubMed] [Google Scholar]
  39. Van Saene H. K., Van der Waaij D. A novel technique for detecting IgA coated potentially pathogenic microorganisms in the human intestine. J Immunol Methods. 1979;30(1):87–96. doi: 10.1016/0022-1759(79)90276-x. [DOI] [PubMed] [Google Scholar]
  40. Weinstein P. D., Cebra J. J. The preference for switching to IgA expression by Peyer's patch germinal center B cells is likely due to the intrinsic influence of their microenvironment. J Immunol. 1991 Dec 15;147(12):4126–4135. [PubMed] [Google Scholar]
  41. Wells J. M., Wilson P. W., Norton P. M., Gasson M. J., Le Page R. W. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol. 1993 Jun;8(6):1155–1162. doi: 10.1111/j.1365-2958.1993.tb01660.x. [DOI] [PubMed] [Google Scholar]
  42. Williams K. R., Claflin J. L. Clonotypes of anti-phosphocholine antibodies induced with Proteus morganii (Potter). I. Structural and idiotypic similarities in a diverse repertoire. J Immunol. 1980 Dec;125(6):2429–2436. [PubMed] [Google Scholar]
  43. Wold A. E., Dahlgren U. I., Hanson L. A., Mattsby-Baltzer I., Midvetdt T. Difference between bacterial and food antigens in mucosal immunogenicity. Infect Immun. 1989 Sep;57(9):2666–2673. doi: 10.1128/iai.57.9.2666-2673.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Xu-Amano J., Aicher W. K., Taguchi T., Kiyono H., McGhee J. R. Selective induction of Th2 cells in murine Peyer's patches by oral immunization. Int Immunol. 1992 Apr;4(4):433–445. doi: 10.1093/intimm/4.4.433. [DOI] [PubMed] [Google Scholar]
  45. van der Waaij L. A., Mesander G., Limburg P. C., van der Waaij D. Direct flow cytometry of anaerobic bacteria in human feces. Cytometry. 1994 Jul 1;16(3):270–279. doi: 10.1002/cyto.990160312. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES