Abstract
Objective: To test whether statistical models developed to calculate pre-test probability of being a BRCA1/2 carrier can differentiate better between the breast/ovarian families to be referred to the DNA test laboratory.
Study design: A retrospective analysis was performed in 109 Spanish breast/ovarian families previously screened for germline mutations in both the BRCA1 and BRCA2 genes. Four easy to use logistic regression models originally developed in Spanish (HCSC model), Dutch (LUMC model), Finnish (HUCH model), and North American (U Penn model) families and one model based on empirical data of Frank 2002 were tested. A risk counsellor was asked to assign a subjective pre-test probability for each family. Sensitivity, specificity, negative and positive predictive values, and areas under receiver operator characteristics (ROC) curves were calculated in each case. Correlation between predicted probability and mutation prevalence was tested. All statistical tests were two sided.
Results: Overall, the models performed well, improving the performances of a genetic counsellor. The median ROC curve area was 0.80 (range 0.77-0.82). At 100% sensitivity, the median specificity was 30% (range 25-33%). At 92% sensitivity, the median specificity was 42% (range 33.3-54.2%) and the median negative predictive value was 93% (range 89.7-98%). BRCA1 families tended to score higher risk than BRCA2 families in all models tested.
Conclusions: All models increased the discrimination power of an experienced risk counsellor, suggesting that their use is valuable in the context of clinical counselling and genetic testing to optimise selection of patients for screening and allowing for more focused management. Models developed in different ethnic populations performed similarly well in a Spanish series of families, suggesting that models targeted to specific populations may not be necessary in all cases. Carrier probability as predicted by the models is consistent with actual prevalence, although in general models tend to underestimate it. Our study suggests that these models may perform differently in populations with a high prevalence of BRCA2 mutations.
Full Text
The Full Text of this article is available as a PDF (181.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campos B., Diez O., Domènech M., Baena M., Pericay C., Balmaña J., del Rio E., Sanz J., Alonso C., Baiget M. BRCA2 mutation analysis of 87 Spanish breast/ovarian cancer families. Ann Oncol. 2001 Dec;12(12):1699–1703. doi: 10.1023/a:1013517313008. [DOI] [PubMed] [Google Scholar]
- Couch F. J., DeShano M. L., Blackwood M. A., Calzone K., Stopfer J., Campeau L., Ganguly A., Rebbeck T., Weber B. L. BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N Engl J Med. 1997 May 15;336(20):1409–1415. doi: 10.1056/NEJM199705153362002. [DOI] [PubMed] [Google Scholar]
- Domchek Susan M., Eisen Andrea, Calzone Kathleen, Stopfer Jill, Blackwood Anne, Weber Barbara L. Application of breast cancer risk prediction models in clinical practice. J Clin Oncol. 2003 Feb 15;21(4):593–601. doi: 10.1200/JCO.2003.07.007. [DOI] [PubMed] [Google Scholar]
- Díez O., Cortés J., Domènech M., Brunet J., Del Río E., Pericay C., Sanz J., Alonso C., Baiget M. BRCA1 mutation analysis in 83 Spanish breast and breast/ovarian cancer families. Int J Cancer. 1999 Nov 12;83(4):465–469. doi: 10.1002/(sici)1097-0215(19991112)83:4<465::aid-ijc5>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
- Eng C., Brody L. C., Wagner T. M., Devilee P., Vijg J., Szabo C., Tavtigian S. V., Nathanson K. L., Ostrander E., Frank T. S. Interpreting epidemiological research: blinded comparison of methods used to estimate the prevalence of inherited mutations in BRCA1. J Med Genet. 2001 Dec;38(12):824–833. doi: 10.1136/jmg.38.12.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eng C., Hampel H., de la Chapelle A. Genetic testing for cancer predisposition. Annu Rev Med. 2001;52:371–400. doi: 10.1146/annurev.med.52.1.371. [DOI] [PubMed] [Google Scholar]
- Euhus David M., Smith Kristin C., Robinson Linda, Stucky Amy, Olopade Olufunmilayo I., Cummings Shelly, Garber Judy E., Chittenden Anu, Mills Gordon B., Rieger Paula. Pretest prediction of BRCA1 or BRCA2 mutation by risk counselors and the computer model BRCAPRO. J Natl Cancer Inst. 2002 Jun 5;94(11):844–851. doi: 10.1093/jnci/94.11.844. [DOI] [PubMed] [Google Scholar]
- Ford D., Easton D. F., Stratton M., Narod S., Goldgar D., Devilee P., Bishop D. T., Weber B., Lenoir G., Chang-Claude J. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998 Mar;62(3):676–689. doi: 10.1086/301749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank Thomas S., Deffenbaugh Amie M., Reid Julia E., Hulick Mark, Ward Brian E., Lingenfelter Beth, Gumpper Kathi L., Scholl Thomas, Tavtigian Sean V., Pruss Dmitry R. Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol. 2002 Mar 15;20(6):1480–1490. doi: 10.1200/JCO.2002.20.6.1480. [DOI] [PubMed] [Google Scholar]
- Miki Y., Swensen J., Shattuck-Eidens D., Futreal P. A., Harshman K., Tavtigian S., Liu Q., Cochran C., Bennett L. M., Ding W. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994 Oct 7;266(5182):66–71. doi: 10.1126/science.7545954. [DOI] [PubMed] [Google Scholar]
- Osorio A., Barroso A., Martínez B., Cebrián A., San Román J. M., Lobo F., Robledo M., Benítez J. Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families. Br J Cancer. 2000 Apr;82(7):1266–1270. doi: 10.1054/bjoc.1999.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parmigiani G., Berry D., Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998 Jan;62(1):145–158. doi: 10.1086/301670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peelen T., van Vliet M., Petrij-Bosch A., Mieremet R., Szabo C., van den Ouweland A. M., Hogervorst F., Brohet R., Ligtenberg M. J., Teugels E. A high proportion of novel mutations in BRCA1 with strong founder effects among Dutch and Belgian hereditary breast and ovarian cancer families. Am J Hum Genet. 1997 May;60(5):1041–1049. [PMC free article] [PubMed] [Google Scholar]
- Shattuck-Eidens D., Oliphant A., McClure M., McBride C., Gupte J., Rubano T., Pruss D., Tavtigian S. V., Teng D. H., Adey N. BRCA1 sequence analysis in women at high risk for susceptibility mutations. Risk factor analysis and implications for genetic testing. JAMA. 1997 Oct 15;278(15):1242–1250. [PubMed] [Google Scholar]
- Vahteristo P., Eerola H., Tamminen A., Blomqvist C., Nevanlinna H. A probability model for predicting BRCA1 and BRCA2 mutations in breast and breast-ovarian cancer families. Br J Cancer. 2001 Mar 2;84(5):704–708. doi: 10.1054/bjoc.2000.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner T. M., Möslinger R. A., Muhr D., Langbauer G., Hirtenlehner K., Concin H., Doeller W., Haid A., Lang A. H., Mayer P. BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics. Int J Cancer. 1998 Jul 29;77(3):354–360. doi: 10.1002/(sici)1097-0215(19980729)77:3<354::aid-ijc8>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Wooster R., Neuhausen S. L., Mangion J., Quirk Y., Ford D., Collins N., Nguyen K., Seal S., Tran T., Averill D. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994 Sep 30;265(5181):2088–2090. doi: 10.1126/science.8091231. [DOI] [PubMed] [Google Scholar]
- de la Hoya Miguel, Osorio Ana, Godino Javier, Sulleiro Sara, Tosar Alicia, Perez-Segura Pedro, Fernandez Cristina, Rodríguez Raquel, Díaz-Rubio Eduardo, Benítez Javier. Association between BRCA1 and BRCA2 mutations and cancer phenotype in Spanish breast/ovarian cancer families: implications for genetic testing. Int J Cancer. 2002 Feb 1;97(4):466–471. doi: 10.1002/ijc.1627. [DOI] [PubMed] [Google Scholar]