Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2003 Aug;40(8):575–584. doi: 10.1136/jmg.40.8.575

Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms

H Wilson 1, A Wong 1, S Shaw 1, W Tse 1, G Stapleton 1, M Phelan 1, S Hu 1, J Marshall 1, H McDermid 1
PMCID: PMC1735560  PMID: 12920066

Abstract

Methods: The 22q13 deletion syndrome (MIM 606232) is characterised by moderate to profound mental retardation, delay/absence of expressive speech, hypotonia, normal to accelerated growth, and mild dysmorphic features. We have determined the deletion size and parent of origin in 56 patients with this syndrome.

Results: Similar to other terminal deletion syndromes, there was an overabundance of paternal deletions. The deletions vary widely in size, from 130 kb to over 9 Mb; however all 45 cases that could be specifically tested for the terminal region at the site of SHANK3 were deleted for this gene. The molecular structure of SHANK3 was further characterised. Comparison of clinical features to deletion size showed few correlations. Some measures of developmental assessment did correlate to deletion size; however, all patients showed some degree of mental retardation and severe delay or absence of expressive speech, regardless of deletion size.

Conclusion: Our analysis therefore supports haploinsufficiency of the gene SHANK3, which codes for a structural protein of the postsynaptic density, as a major causative factor in the neurological symptoms of 22q13 deletion syndrome.

Full Text

The Full Text of this article is available as a PDF (359.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKAKI D. T., SPARKES R. S. MICROTECHNIQUE FOR CULTURING LEUKOCYTES FROM WHOLE BLOOD. Cytogenetics. 1963;2:57–60. doi: 10.1159/000129767. [DOI] [PubMed] [Google Scholar]
  2. Adham I. M., Grzeschik K. H., Geurts van Kessel A. H., Engel W. The gene encoding the human preproacrosin (ACR) maps to the q13-qter region on chromosome 22. Hum Genet. 1989 Dec;84(1):59–62. doi: 10.1007/BF00210672. [DOI] [PubMed] [Google Scholar]
  3. Anderlid Britt-Marie, Schoumans Jacqueline, Annerén Göran, Sahlén Sigrid, Kyllerman Mårten, Vujic Mihailo, Hagberg Bengt, Blennow Elisabeth, Nordenskjöld Magnus. Subtelomeric rearrangements detected in patients with idiopathic mental retardation. Am J Med Genet. 2002 Feb 1;107(4):275–284. doi: 10.1002/ajmg.10029. [DOI] [PubMed] [Google Scholar]
  4. Anderlid Britt-Marie, Schoumans Jacqueline, Annerén Göran, Tapia-Paez Isabel, Dumanski Jan, Blennow Elisabeth, Nordenskjöld Magnus. FISH-mapping of a 100-kb terminal 22q13 deletion. Hum Genet. 2002 Apr 4;110(5):439–443. doi: 10.1007/s00439-002-0713-7. [DOI] [PubMed] [Google Scholar]
  5. Armour J. A., Jeffreys A. J. STS for minisatellite MS607 (D22S163). Nucleic Acids Res. 1991 Jun 11;19(11):3158–3158. doi: 10.1093/nar/19.11.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Armour J. A., Povey S., Jeremiah S., Jeffreys A. J. Systematic cloning of human minisatellites from ordered array charomid libraries. Genomics. 1990 Nov;8(3):501–512. doi: 10.1016/0888-7543(90)90037-u. [DOI] [PubMed] [Google Scholar]
  7. Baker Elizabeth, Hinton Lyn, Callen David F., Altree Meryl, Dobbie Angus, Eyre Helen J., Sutherland Grant R., Thompson Elizabeth, Thompson Peter, Woollatt Erica. Study of 250 children with idiopathic mental retardation reveals nine cryptic and diverse subtelomeric chromosome anomalies. Am J Med Genet. 2002 Feb 1;107(4):285–293. doi: 10.1002/ajmg.10159. [DOI] [PubMed] [Google Scholar]
  8. Boeckers T. M., Kreutz M. R., Winter C., Zuschratter W., Smalla K. H., Sanmarti-Vila L., Wex H., Langnaese K., Bockmann J., Garner C. C. Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci. 1999 Aug 1;19(15):6506–6518. doi: 10.1523/JNEUROSCI.19-15-06506.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boeckers T. M., Winter C., Smalla K. H., Kreutz M. R., Bockmann J., Seidenbecher C., Garner C. C., Gundelfinger E. D. Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochem Biophys Res Commun. 1999 Oct 14;264(1):247–252. doi: 10.1006/bbrc.1999.1489. [DOI] [PubMed] [Google Scholar]
  10. Boeckers Tobias M., Bockmann Jürgen, Kreutz Michael R., Gundelfinger Eckart D. ProSAP/Shank proteins - a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem. 2002 Jun;81(5):903–910. doi: 10.1046/j.1471-4159.2002.00931.x. [DOI] [PubMed] [Google Scholar]
  11. Bonaglia M. C., Giorda R., Borgatti R., Felisari G., Gagliardi C., Selicorni A., Zuffardi O. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet. 2001 Jun 18;69(2):261–268. doi: 10.1086/321293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cody J. D., Pierce J. F., Brkanac Z., Plaetke R., Ghidoni P. D., Kaye C. I., Leach R. J. Preferential loss of the paternal alleles in the 18q- syndrome. Am J Med Genet. 1997 Mar 31;69(3):280–286. doi: 10.1002/(sici)1096-8628(19970331)69:3<280::aid-ajmg12>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  14. Dallapiccola B., Mandich P., Bellone E., Selicorni A., Mokin V., Ajmar F., Novelli G. Parental origin of chromosome 4p deletion in Wolf-Hirschhorn syndrome. Am J Med Genet. 1993 Nov 1;47(6):921–924. doi: 10.1002/ajmg.1320470622. [DOI] [PubMed] [Google Scholar]
  15. Doheny K. F., McDermid H. E., Harum K., Thomas G. H., Raymond G. V. Cryptic terminal rearrangement of chromosome 22q13.32 detected by FISH in two unrelated patients. J Med Genet. 1997 Aug;34(8):640–644. doi: 10.1136/jmg.34.8.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ehlers M. D. Synapse structure: glutamate receptors connected by the shanks. Curr Biol. 1999 Nov 18;9(22):R848–R850. doi: 10.1016/s0960-9822(00)80043-3. [DOI] [PubMed] [Google Scholar]
  17. Flint J., Wilkie A. O., Buckle V. J., Winter R. M., Holland A. J., McDermid H. E. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet. 1995 Feb;9(2):132–140. doi: 10.1038/ng0295-132. [DOI] [PubMed] [Google Scholar]
  18. Flörke-Gerloff S., Töpfer-Petersen E., Müller-Esterl W., Schill W. B., Engel W. Acrosin and the acrosome in human spermatogenesis. Hum Genet. 1983;65(1):61–67. doi: 10.1007/BF00285030. [DOI] [PubMed] [Google Scholar]
  19. Goizet C., Excoffier E., Taine L., Taupiac E., El Moneim A. A., Arveiler B., Bouvard M., Lacombe D. Case with autistic syndrome and chromosome 22q13.3 deletion detected by FISH. Am J Med Genet. 2000 Dec 4;96(6):839–844. [PubMed] [Google Scholar]
  20. Gustincich S., Manfioletti G., Del Sal G., Schneider C., Carninci P. A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques. 1991 Sep;11(3):298-300, 302. [PubMed] [Google Scholar]
  21. Hill B. K., Bruininks R. H. Maladaptive behavior of mentally retarded individuals in residential facilities. Am J Ment Defic. 1984 Jan;88(4):380–387. [PubMed] [Google Scholar]
  22. Joyce C. A., Dennis N. R., Cooper S., Browne C. E. Subtelomeric rearrangements: results from a study of selected and unselected probands with idiopathic mental retardation and control individuals by using high-resolution G-banding and FISH. Hum Genet. 2001 Oct;109(4):440–451. doi: 10.1007/s004390100588. [DOI] [PubMed] [Google Scholar]
  23. Kirkels V. G., Hustinx T. W., Scheres J. M. Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter. Clin Genet. 1980 Dec;18(6):456–461. doi: 10.1111/j.1399-0004.1980.tb01794.x. [DOI] [PubMed] [Google Scholar]
  24. Kreienkamp H-J, Soltau M., Richter D., Böckers T. Interaction of G-protein-coupled receptors with synaptic scaffolding proteins. Biochem Soc Trans. 2002 Aug;30(4):464–468. doi: 10.1042/bst0300464. [DOI] [PubMed] [Google Scholar]
  25. Lim S., Naisbitt S., Yoon J., Hwang J. I., Suh P. G., Sheng M., Kim E. Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem. 1999 Oct 8;274(41):29510–29518. doi: 10.1074/jbc.274.41.29510. [DOI] [PubMed] [Google Scholar]
  26. MacLean J. E., Teshima I. E., Szatmari P., Nowaczyk M. J. Ring chromosome 22 and autism: report and review. Am J Med Genet. 2000 Feb 28;90(5):382–385. [PubMed] [Google Scholar]
  27. McDermid Heather E., Morrow Bernice E. Genomic disorders on 22q11. Am J Hum Genet. 2002 Mar 29;70(5):1077–1088. doi: 10.1086/340363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McTaggart K. E., Budarf M. L., Driscoll D. A., Emanuel B. S., Ferreira P., McDermid H. E. Cat eye syndrome chromosome breakpoint clustering: identification of two intervals also associated with 22q11 deletion syndrome breakpoints. Cytogenet Cell Genet. 1998;81(3-4):222–228. doi: 10.1159/000015035. [DOI] [PubMed] [Google Scholar]
  29. Naisbitt S., Kim E., Tu J. C., Xiao B., Sala C., Valtschanoff J., Weinberg R. J., Worley P. F., Sheng M. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999 Jul;23(3):569–582. doi: 10.1016/s0896-6273(00)80809-0. [DOI] [PubMed] [Google Scholar]
  30. Nesslinger N. J., Gorski J. L., Kurczynski T. W., Shapira S. K., Siegel-Bartelt J., Dumanski J. P., Cullen R. F., Jr, French B. N., McDermid H. E. Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. Am J Hum Genet. 1994 Mar;54(3):464–472. [PMC free article] [PubMed] [Google Scholar]
  31. Ofir R., Wong A. C., McDermid H. E., Skorecki K. L., Selig S. Position effect of human telomeric repeats on replication timing. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11434–11439. doi: 10.1073/pnas.96.20.11434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Palmer C. G., Schwartz S., Hodes M. E. Transmission of a balanced homologous t(22q;22q) translocation from mother to normal daughter. Clin Genet. 1980 Jun;17(6):418–422. doi: 10.1111/j.1399-0004.1980.tb00173.x. [DOI] [PubMed] [Google Scholar]
  33. Phelan M. C., Rogers R. C., Saul R. A., Stapleton G. A., Sweet K., McDermid H., Shaw S. R., Claytor J., Willis J., Kelly D. P. 22q13 deletion syndrome. Am J Med Genet. 2001 Jun 15;101(2):91–99. doi: 10.1002/1096-8628(20010615)101:2<91::aid-ajmg1340>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  34. Phelan M. C., Thomas G. R., Saul R. A., Rogers R. C., Taylor H. A., Wenger D. A., McDermid H. E. Cytogenetic, biochemical, and molecular analyses of a 22q13 deletion. Am J Med Genet. 1992 Jul 15;43(5):872–876. doi: 10.1002/ajmg.1320430524. [DOI] [PubMed] [Google Scholar]
  35. Powell B. R., Budden S. S., Buist N. R. Dominantly inherited megalencephaly, muscle weakness, and myoliposis: a carnitine-deficient myopathy within the spectrum of the Ruvalcaba-Myhre-Smith syndrome. J Pediatr. 1993 Jul;123(1):70–75. doi: 10.1016/s0022-3476(05)81539-2. [DOI] [PubMed] [Google Scholar]
  36. Prasad C., Prasad A. N., Chodirker B. N., Lee C., Dawson A. K., Jocelyn L. J., Chudley A. E. Genetic evaluation of pervasive developmental disorders: the terminal 22q13 deletion syndrome may represent a recognizable phenotype. Clin Genet. 2000 Feb;57(2):103–109. doi: 10.1034/j.1399-0004.2000.570203.x. [DOI] [PubMed] [Google Scholar]
  37. Precht K. S., Lese C. M., Spiro R. P., Huttenlocher P. R., Johnston K. M., Baker J. C., Christian S. L., Kittikamron K., Ledbetter D. H. Two 22q telomere deletions serendipitously detected by FISH. J Med Genet. 1998 Nov;35(11):939–942. doi: 10.1136/jmg.35.11.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Quarrell O. W., Snell R. G., Curtis M. A., Roberts S. H., Harper P. S., Shaw D. J. Paternal origin of the chromosomal deletion resulting in Wolf-Hirschhorn syndrome. J Med Genet. 1991 Apr;28(4):256–259. doi: 10.1136/jmg.28.4.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Riegel M., Baumer A., Jamar M., Delbecque K., Herens C., Verloes A., Schinzel A. Submicroscopic terminal deletions and duplications in retarded patients with unclassified malformation syndromes. Hum Genet. 2001 Sep;109(3):286–294. doi: 10.1007/s004390100585. [DOI] [PubMed] [Google Scholar]
  40. Riegel M., Baumer A., Wisser J., Acherman J., Schinzel A. Prenatal diagnosis of mosaicism for a del(22)(q13). Prenat Diagn. 2000 Jan;20(1):76–79. doi: 10.1002/(sici)1097-0223(200001)20:1<76::aid-pd752>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  41. Rosenberg M. J., Killoran C., Dziadzio L., Chang S., Stone D. L., Meck J., Aughton D., Bird L. M., Bodurtha J., Cassidy S. B. Scanning for telomeric deletions and duplications and uniparental disomy using genetic markers in 120 children with malformations. Hum Genet. 2001 Sep;109(3):311–318. doi: 10.1007/s004390100559. [DOI] [PubMed] [Google Scholar]
  42. Sala C., Piëch V., Wilson N. R., Passafaro M., Liu G., Sheng M. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron. 2001 Jul 19;31(1):115–130. doi: 10.1016/s0896-6273(01)00339-7. [DOI] [PubMed] [Google Scholar]
  43. Schinzel A. A., Basaran S., Bernasconi F., Karaman B., Yüksel-Apak M., Robinson W. P. Maternal uniparental disomy 22 has no impact on the phenotype. Am J Hum Genet. 1994 Jan;54(1):21–24. [PMC free article] [PubMed] [Google Scholar]
  44. Schröder K., Schuffenhauer S., Seidel H., Bartsch O., Blin N., Hinkel G. K., Schmitt H. Deletion mapping by FISH with BACs in patients with partial monosomy 22q13. Hum Genet. 1998 May;102(5):557–561. doi: 10.1007/s004390050739. [DOI] [PubMed] [Google Scholar]
  45. Sismani C., Armour J. A., Flint J., Girgalli C., Regan R., Patsalis P. C. Screening for subtelomeric chromosome abnormalities in children with idiopathic mental retardation using multiprobe telomeric FISH and the new MAPH telomeric assay. Eur J Hum Genet. 2001 Jul;9(7):527–532. doi: 10.1038/sj.ejhg.5200670. [DOI] [PubMed] [Google Scholar]
  46. Tupler R., Bortotto L., Bühler E. M., Alkan M., Malik N. J., Bösch-Al Jadooa N., Memo L., Maraschio P. Paternal origin of the de novo deleted chromosome 4 in Wolf-Hirschhorn syndrome. J Med Genet. 1992 Jan;29(1):53–55. doi: 10.1136/jmg.29.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Watt J. L., Olson I. A., Johnston A. W., Ross H. S., Couzin D. A., Stephen G. S. A familial pericentric inversion of chromosome 22 with a recombinant subject illustrating a 'pure' partial monosomy syndrome. J Med Genet. 1985 Aug;22(4):283–287. doi: 10.1136/jmg.22.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wong A. C., Ning Y., Flint J., Clark K., Dumanski J. P., Ledbetter D. H., McDermid H. E. Molecular characterization of a 130-kb terminal microdeletion at 22q in a child with mild mental retardation. Am J Hum Genet. 1997 Jan;60(1):113–120. [PMC free article] [PubMed] [Google Scholar]
  49. Wong A. C., Shkolny D., Dorman A., Willingham D., Roe B. A., McDermid H. E. Two novel human RAB genes with near identical sequence each map to a telomere-associated region: the subtelomeric region of 22q13.3 and the ancestral telomere band 2q13. Genomics. 1999 Aug 1;59(3):326–334. doi: 10.1006/geno.1999.5889. [DOI] [PubMed] [Google Scholar]
  50. de Vries B. B., Bitner-Glindzicz M., Knight S. J., Tyson J., MacDermont K. D., Flint J., Malcolm S., Winter R. M. A boy with a submicroscopic 22qter deletion, general overgrowth and features suggestive of FG syndrome. Clin Genet. 2000 Dec;58(6):483–487. doi: 10.1034/j.1399-0004.2000.580610.x. [DOI] [PubMed] [Google Scholar]
  51. de Vries Bert B. A., Tyson Jess, Winter Robin M., Malcolm Sue. No evidence for submicroscopic 22qter deletions in patients with features suggestive for Angelman syndrome. Am J Med Genet. 2002 Apr 22;109(2):117–120. doi: 10.1002/ajmg.10318. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES