Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2004 Oct;41(10):758–762. doi: 10.1136/jmg.2004.022012

Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction

M Cornelis 1, A El-Sohemy 1, H Campos 1
PMCID: PMC1735605  PMID: 15466009

Abstract

Background: There is growing evidence that DNA damage caused by mutagens found in tobacco smoke may contribute to the development of coronary heart disease (CHD). In order to bind to DNA many mutagens require metabolic activation by cytochrome P450 (CYP) 1A1 or CYP1A2. The objective of this study was to determine the effects of CYP1A1 and CYP1A2 genotypes on risk of myocardial infarction (MI) and whether smoking interacts with genotype to modify risk.

Methods: Subjects (n = 873) with a first acute non-fatal MI and population based controls (n = 932) living in Costa Rica, matched for age, sex, and area of residence, were genotyped for CYP1A1*2A and CYP1A2*1F by restriction-fragment length polymorphism (RFLP)-PCR, and smoking status was determined by questionnaire.

Results: After adjusting for matching variables and potential confounders, no association was observed between CYP1A1 genotype and risk of MI. Compared to individuals with the high inducibility CYP1A2*1A/*1A genotype, the adjusted odds ratio and 95% confidence intervals for risk of MI were 1.19 (0.97 to 1.47) for the *1A/*1F genotype and 1.55 (1.10 to 2.18) for the *1F/*1F genotype. No significant interactions were observed between smoking and either CYP1A1 or CYP1A2 genotype.

Conclusions: The low inducibility genotype for CYP1A2 was associated with an increased risk of MI. This effect was independent of smoking status and suggests that a substrate of CYP1A2 that is detoxified rather than activated may play a role in CHD.

Full Text

The Full Text of this article is available as a PDF (77.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert R. E., Vanderlaan M., Burns F. J., Nishizumi M. Effect of carcinogens on chicken atherosclerosis. Cancer Res. 1977 Jul;37(7 Pt 1):2232–2235. [PubMed] [Google Scholar]
  2. Baylin Ana, Kabagambe Edmond K., Ascherio Alberto, Spiegelman Donna, Campos Hannia. Adipose tissue alpha-linolenic acid and nonfatal acute myocardial infarction in Costa Rica. Circulation. 2003 Mar 10;107(12):1586–1591. doi: 10.1161/01.CIR.0000058165.81208.C6. [DOI] [PubMed] [Google Scholar]
  3. Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1753–1756. doi: 10.1073/pnas.70.6.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bock K. W., Schrenk D., Forster A., Griese E. U., Mörike K., Brockmeier D., Eichelbaum M. The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics. 1994 Aug;4(4):209–218. doi: 10.1097/00008571-199408000-00005. [DOI] [PubMed] [Google Scholar]
  5. Botto N., Rizza A., Colombo M. G., Mazzone A. M., Manfredi S., Masetti S., Clerico A., Biagini A., Andreassi M. G. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001 Jun 27;493(1-2):23–30. doi: 10.1016/s1383-5718(01)00162-0. [DOI] [PubMed] [Google Scholar]
  6. Butler M. A., Iwasaki M., Guengerich F. P., Kadlubar F. F. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7696–7700. doi: 10.1073/pnas.86.20.7696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cascorbi I., Brockmöller J., Roots I. A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res. 1996 Nov 1;56(21):4965–4969. [PubMed] [Google Scholar]
  8. Chida M., Yokoi T., Fukui T., Kinoshita M., Yokota J., Kamataki T. Detection of three genetic polymorphisms in the 5'-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res. 1999 Sep;90(9):899–902. doi: 10.1111/j.1349-7006.1999.tb00832.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frye Reginald F., Schneider Virginia M., Frye Carole S., Feldman Arthur M. Plasma levels of TNF-alpha and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J Card Fail. 2002 Oct;8(5):315–319. doi: 10.1054/jcaf.2002.127773. [DOI] [PubMed] [Google Scholar]
  10. Greenland S. A meta-analysis of coffee, myocardial infarction, and coronary death. Epidemiology. 1993 Jul;4(4):366–374. doi: 10.1097/00001648-199307000-00013. [DOI] [PubMed] [Google Scholar]
  11. Hammons G. J., Milton D., Stepps K., Guengerich F. P., Tukey R. H., Kadlubar F. F. Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes. Carcinogenesis. 1997 Apr;18(4):851–854. doi: 10.1093/carcin/18.4.851. [DOI] [PubMed] [Google Scholar]
  12. Harper Patricia A., Wong Judy m. Y., Lam Maria S. M., Okey Allan B. Polymorphisms in the human AH receptor. Chem Biol Interact. 2002 Sep 20;141(1-2):161–187. doi: 10.1016/s0009-2797(02)00071-6. [DOI] [PubMed] [Google Scholar]
  13. Izzotti A., De Flora S., Petrilli G. L., Gallagher J., Rojas M., Alexandrov K., Bartsch H., Lewtas J. Cancer biomarkers in human atherosclerotic lesions: detection of DNA adducts. Cancer Epidemiol Biomarkers Prev. 1995 Mar;4(2):105–110. [PubMed] [Google Scholar]
  14. Landi M. T., Bertazzi P. A., Shields P. G., Clark G., Lucier G. W., Garte S. J., Cosma G., Caporaso N. E. Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacogenetics. 1994 Oct;4(5):242–246. doi: 10.1097/00008571-199410000-00002. [DOI] [PubMed] [Google Scholar]
  15. Li R., Boerwinkle E., Olshan A. F., Chambless L. E., Pankow J. S., Tyroler H. A., Bray M., Pittman G. S., Bell D. A., Heiss G. Glutathione S-transferase genotype as a susceptibility factor in smoking-related coronary heart disease. Atherosclerosis. 2000 Apr;149(2):451–462. doi: 10.1016/s0021-9150(99)00483-9. [DOI] [PubMed] [Google Scholar]
  16. MacLeod S., Sinha R., Kadlubar F. F., Lang N. P. Polymorphisms of CYP1A1 and GSTM1 influence the in vivo function of CYP1A2. Mutat Res. 1997 May 12;376(1-2):135–142. doi: 10.1016/s0027-5107(97)00036-5. [DOI] [PubMed] [Google Scholar]
  17. Murry C. E., Gipaya C. T., Bartosek T., Benditt E. P., Schwartz S. M. Monoclonality of smooth muscle cells in human atherosclerosis. Am J Pathol. 1997 Sep;151(3):697–705. [PMC free article] [PubMed] [Google Scholar]
  18. Olshan Andrew F., Li Rongling, Pankow James S., Bray Molly, Tyroler Herman A., Chambless Lloyd E., Boerwinkle Eric, Pittman Gary S., Bell Douglas A. Risk of atherosclerosis: interaction of smoking and glutathione S-transferase genes. Epidemiology. 2003 May;14(3):321–327. [PubMed] [Google Scholar]
  19. Penn A. International Commission for Protection Against Environmental Mutagens and Carcinogens. ICPEMC Working Paper 7/1/1. Mutational events in the etiology of arteriosclerotic plaques. Mutat Res. 1990 Nov;239(3):149–162. doi: 10.1016/0165-1110(90)90003-t. [DOI] [PubMed] [Google Scholar]
  20. Penn A., Snyder C. Arteriosclerotic plaque development is 'promoted' by polynuclear aromatic hydrocarbons. Carcinogenesis. 1988 Dec;9(12):2185–2189. doi: 10.1093/carcin/9.12.2185. [DOI] [PubMed] [Google Scholar]
  21. Persson I., Johansson I., Ingelman-Sundberg M. In vitro kinetics of two human CYP1A1 variant enzymes suggested to be associated with interindividual differences in cancer susceptibility. Biochem Biophys Res Commun. 1997 Feb 3;231(1):227–230. doi: 10.1006/bbrc.1997.6051. [DOI] [PubMed] [Google Scholar]
  22. Randerath E., Mittal D., Randerath K. Tissue distribution of covalent DNA damage in mice treated dermally with cigarette 'tar': preference for lung and heart DNA. Carcinogenesis. 1988 Jan;9(1):75–80. doi: 10.1093/carcin/9.1.75. [DOI] [PubMed] [Google Scholar]
  23. Ross J. S., Stagliano N. E., Donovan M. J., Breitbart R. E., Ginsburg G. S. Atherosclerosis: a cancer of the blood vessels? Am J Clin Pathol. 2001 Dec;116 (Suppl):S97–107. doi: 10.1309/YNCK-9R19-5JA3-K2K9. [DOI] [PubMed] [Google Scholar]
  24. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  25. Sachse C., Brockmöller J., Bauer S., Roots I. Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999 Apr;47(4):445–449. doi: 10.1046/j.1365-2125.1999.00898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sachse Christoph, Bhambra Upinder, Smith Gillian, Lightfoot Tracy J., Barrett Jennifer H., Scollay Jenna, Garner R. Colin, Boobis Alan R., Wolf C. Roland, Gooderham Nigel J. Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol. 2003 Jan;55(1):68–76. doi: 10.1046/j.1365-2125.2003.01733.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sen-Banerjee S., Siles X., Campos H. Tobacco smoking modifies association between Gln-Arg192 polymorphism of human paraoxonase gene and risk of myocardial infarction. Arterioscler Thromb Vasc Biol. 2000 Sep;20(9):2120–2126. doi: 10.1161/01.atv.20.9.2120. [DOI] [PubMed] [Google Scholar]
  28. Shertzer Howard G., Clay Corey D., Genter Mary Beth, Schneider Scott N., Nebert Daniel W., Dalton Timothy P. Cyp1a2 protects against reactive oxygen production in mouse liver microsomes. Free Radic Biol Med. 2004 Mar 1;36(5):605–617. doi: 10.1016/j.freeradbiomed.2003.11.013. [DOI] [PubMed] [Google Scholar]
  29. Shou M., Gonzalez F. J., Gelboin H. V. Stereoselective epoxidation and hydration at the K-region of polycyclic aromatic hydrocarbons by cDNA-expressed cytochromes P450 1A1, 1A2, and epoxide hydrolase. Biochemistry. 1996 Dec 10;35(49):15807–15813. doi: 10.1021/bi962042z. [DOI] [PubMed] [Google Scholar]
  30. Smith Andrew G., Davies Reginald, Dalton Timothy P., Miller Marian L., Judah David, Riley Joan, Gant Timothy, Nebert Daniel W. Intrinsic hepatic phenotype associated with the Cyp1a2 gene as shown by cDNA expression microarray analysis of the knockout mouse. EHP Toxicogenomics. 2003 Jan;111(1T):45–51. [PubMed] [Google Scholar]
  31. Taningher M., Malacarne D., Izzotti A., Ugolini D., Parodi S. Drug metabolism polymorphisms as modulators of cancer susceptibility. Mutat Res. 1999 May;436(3):227–261. doi: 10.1016/s1383-5742(99)00005-8. [DOI] [PubMed] [Google Scholar]
  32. Thum T., Borlak J. Gene expression in distinct regions of the heart. Lancet. 2000 Mar 18;355(9208):979–983. doi: 10.1016/S0140-6736(00)99016-0. [DOI] [PubMed] [Google Scholar]
  33. Tunstall-Pedoe H., Kuulasmaa K., Amouyel P., Arveiler D., Rajakangas A. M., Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation. 1994 Jul;90(1):583–612. doi: 10.1161/01.cir.90.1.583. [DOI] [PubMed] [Google Scholar]
  34. Turesky R. J., Constable A., Richoz J., Varga N., Markovic J., Martin M. V., Guengerich F. P. Activation of heterocyclic aromatic amines by rat and human liver microsomes and by purified rat and human cytochrome P450 1A2. Chem Res Toxicol. 1998 Aug;11(8):925–936. doi: 10.1021/tx980022n. [DOI] [PubMed] [Google Scholar]
  35. Van Schooten F. J., Hirvonen A., Maas L. M., De Mol B. A., Kleinjans J. C., Bell D. A., Durrer J. D. Putative susceptibility markers of coronary artery disease: association between VDR genotype, smoking, and aromatic DNA adduct levels in human right atrial tissue. FASEB J. 1998 Oct;12(13):1409–1417. doi: 10.1096/fasebj.12.13.1409. [DOI] [PubMed] [Google Scholar]
  36. Wang Xing Li, Greco Marissa, Sim Ah Siew, Duarte Natalia, Wang Jian, Wilcken David E. L. Effect of CYP1A1 MspI polymorphism on cigarette smoking related coronary artery disease and diabetes. Atherosclerosis. 2002 Jun;162(2):391–397. doi: 10.1016/s0021-9150(01)00723-7. [DOI] [PubMed] [Google Scholar]
  37. Wang Xing Li, Greco Marissa, Sim Ah Siew, Duarte Natalia, Wang Jian, Wilcken David E. L. Glutathione S-transferase mu1 deficiency, cigarette smoking and coronary artery disease. J Cardiovasc Risk. 2002 Feb;9(1):25–31. doi: 10.1177/174182670200900104. [DOI] [PubMed] [Google Scholar]
  38. Wilson Michael H., Grant Peter J., Kain Kirti, Warner Darren P., Wild Christopher P. Association between the risk of coronary artery disease in South Asians and a deletion polymorphism in glutathione S-transferase M1. Biomarkers. 2003 Jan-Feb;8(1):43–50. doi: 10.1080/1354750021000042439. [DOI] [PubMed] [Google Scholar]
  39. Zhang Y. J., Weksler B. B., Wang L., Schwartz J., Santella R. M. Immunohistochemical detection of polycyclic aromatic hydrocarbon-DNA damage in human blood vessels of smokers and non-smokers. Atherosclerosis. 1998 Oct;140(2):325–331. doi: 10.1016/s0021-9150(98)00136-1. [DOI] [PubMed] [Google Scholar]
  40. Zhao W., Parrish A. R., Ramos K. S. Constitutive and inducible expression of cytochrome P450IA1 and P450IB1 in human vascular endothelial and smooth muscle cells. In Vitro Cell Dev Biol Anim. 1998 Oct;34(9):671–673. doi: 10.1007/s11626-998-0060-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES