Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2004 Mar;41(3):147–154. doi: 10.1136/jmg.2003.013896

A genotype-phenotype correlation for GJB2 (connexin 26) deafness

K Cryns 1, E Orzan 1, A Murgia 1, P Huygen 1, F Moreno 1, I del Castillo 1, C Parker 1, H Azaiez 1, S Prasad 1, R Cucci 1, E Leonardi 1, R Snoeckx 1, P Govaerts 1, P H Van de Heyning 1, C M Van de Heyning 1, R Smith 1, G Van Camp 1
PMCID: PMC1735685  PMID: 14985372

Abstract

Introduction: Mutations in GJB2 are the most common cause of non-syndromic autosomal recessive hearing impairment, ranging from mild to profound. Mutation analysis of this gene is widely available as a genetic diagnostic test.

Objective: To assess a possible genotype-phenotype correlation for GJB2.

Design: Retrospective analysis of audiometric data from people with hearing impairment, segregating two GJB2 mutations.

Subjects: Two hundred and seventy seven unrelated patients with hearing impairment who were seen at the ENT departments of local and university hospitals from Italy, Belgium, Spain, and the United States, and who harboured bi-allelic GJB2 mutations.

Results: We found that 35delG homozygotes have significantly more hearing impairment, compared with 35delG/non-35delG compound heterozygotes. People with two non-35delG mutations have even less hearing impairment. We observed a similar gradient of hearing impairment when we categorised mutations as inactivating (that is, stop mutations or frame shifts) or non-inactivating (that is, missense mutations). We demonstrated that certain mutation combinations (including the combination of 35delG with the missense mutations L90P, V37I, or the splice-site mutation IVS1+1G>A, and the V37I/V37I genotype) are associated with significantly less hearing impairment compared with 35delG homozygous genotypes.

Conclusions: This study is the first large systematic analysis indicating that the GJB2 genotype has a major impact on the degree of hearing impairment, and identifying mild genotypes. Furthermore, this study shows that it will be possible to refine this correlation and extend it to additional genotypes. These data will be useful in evaluating habilitation options for people with GJB2 related deafness.

Full Text

The Full Text of this article is available as a PDF (428.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe S., Usami S., Shinkawa H., Kelley P. M., Kimberling W. J. Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet. 2000 Jan;37(1):41–43. doi: 10.1136/jmg.37.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bason L., Dudley T., Lewis K., Shah U., Potsic W., Ferraris A., Fortina P., Rappaport E., Krantz I. D. Homozygosity for the V37I Connexin 26 mutation in three unrelated children with sensorineural hearing loss. Clin Genet. 2002 Jun;61(6):459–464. doi: 10.1034/j.1399-0004.2002.610611.x. [DOI] [PubMed] [Google Scholar]
  3. Bruzzone R., Veronesi V., Gomès D., Bicego M., Duval N., Marlin S., Petit C., D'Andrea P., White T. W. Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett. 2003 Jan 2;533(1-3):79–88. doi: 10.1016/s0014-5793(02)03755-9. [DOI] [PubMed] [Google Scholar]
  4. Cohn E. S., Kelley P. M., Fowler T. W., Gorga M. P., Lefkowitz D. M., Kuehn H. J., Schaefer G. B., Gobar L. S., Hahn F. J., Harris D. J. Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene (GJB2/DFNB1) Pediatrics. 1999 Mar;103(3):546–550. doi: 10.1542/peds.103.3.546. [DOI] [PubMed] [Google Scholar]
  5. D'Andrea Paola, Veronesi Valentina, Bicego Massimiliano, Melchionda Salvatore, Zelante Leopoldo, Di Iorio Enzo, Bruzzone Roberto, Gasparini Paolo. Hearing loss: frequency and functional studies of the most common connexin26 alleles. Biochem Biophys Res Commun. 2002 Aug 23;296(3):685–691. doi: 10.1016/s0006-291x(02)00891-4. [DOI] [PubMed] [Google Scholar]
  6. Denoyelle F., Lina-Granade G., Plauchu H., Bruzzone R., Chaïb H., Lévi-Acobas F., Weil D., Petit C. Connexin 26 gene linked to a dominant deafness. Nature. 1998 May 28;393(6683):319–320. doi: 10.1038/30639. [DOI] [PubMed] [Google Scholar]
  7. Denoyelle F., Marlin S., Weil D., Moatti L., Chauvin P., Garabédian E. N., Petit C. Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect: implications for genetic counselling. Lancet. 1999 Apr 17;353(9161):1298–1303. doi: 10.1016/S0140-6736(98)11071-1. [DOI] [PubMed] [Google Scholar]
  8. Denoyelle F., Weil D., Maw M. A., Wilcox S. A., Lench N. J., Allen-Powell D. R., Osborn A. H., Dahl H. H., Middleton A., Houseman M. J. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet. 1997 Nov;6(12):2173–2177. doi: 10.1093/hmg/6.12.2173. [DOI] [PubMed] [Google Scholar]
  9. Engel-Yeger B., Zaaroura S., Zlotogora J., Shalev S., Hujeirat Y., Carrasquillo M., Saleh B., Pratt H. Otoacoustic emissions and brainstem evoked potentials in compound carriers of connexin 26 mutations. Hear Res. 2003 Jan;175(1-2):140–151. doi: 10.1016/s0378-5955(02)00719-0. [DOI] [PubMed] [Google Scholar]
  10. Estivill X., Fortina P., Surrey S., Rabionet R., Melchionda S., D'Agruma L., Mansfield E., Rappaport E., Govea N., Milà M. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet. 1998 Feb 7;351(9100):394–398. doi: 10.1016/S0140-6736(97)11124-2. [DOI] [PubMed] [Google Scholar]
  11. Gabriel H., Kupsch P., Sudendey J., Winterhager E., Jahnke K., Lautermann J. Mutations in the connexin26/GJB2 gene are the most common event in non-syndromic hearing loss among the German population. Hum Mutat. 2001 Jun;17(6):521–522. doi: 10.1002/humu.1138. [DOI] [PubMed] [Google Scholar]
  12. Gasparini P., Rabionet R., Barbujani G., Melçhionda S., Petersen M., Brøndum-Nielsen K., Metspalu A., Oitmaa E., Pisano M., Fortina P. High carrier frequency of the 35delG deafness mutation in European populations. Genetic Analysis Consortium of GJB2 35delG. Eur J Hum Genet. 2000 Jan;8(1):19–23. doi: 10.1038/sj.ejhg.5200406. [DOI] [PubMed] [Google Scholar]
  13. Govaerts P. J., Yperman M., De Ceulaer G., Daemers K., Van Driessche K., Somers T., Offeciers F. E. A Two-stage bipodal screening model for universal neonatal hearing screening. Otol Neurotol. 2001 Nov;22(6):850–854. doi: 10.1097/00129492-200111000-00023. [DOI] [PubMed] [Google Scholar]
  14. Green G. E., Scott D. A., McDonald J. M., Woodworth G. G., Sheffield V. C., Smith R. J. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA. 1999 Jun 16;281(23):2211–2216. doi: 10.1001/jama.281.23.2211. [DOI] [PubMed] [Google Scholar]
  15. Griffith Andrew J., Friedman Thomas B. Auditory function and the M34T allele of connexin 26. Arch Otolaryngol Head Neck Surg. 2002 Jan;128(1):94–94. [PubMed] [Google Scholar]
  16. Janecke Andreas R., Hirst-Stadlmann Almut, Günther Barbara, Utermann Barbara, Müller Thomas, Löffler Judith, Utermann Gerd, Nekahm-Heis Doris. Progressive hearing loss, and recurrent sudden sensorineural hearing loss associated with GJB2 mutations--phenotypic spectrum and frequencies of GJB2 mutations in Austria. Hum Genet. 2002 Jul 3;111(2):145–153. doi: 10.1007/s00439-002-0762-y. [DOI] [PubMed] [Google Scholar]
  17. Kelley P. M., Harris D. J., Comer B. C., Askew J. W., Fowler T., Smith S. D., Kimberling W. J. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet. 1998 Apr;62(4):792–799. doi: 10.1086/301807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kenna M. A., Wu B. L., Cotanche D. A., Korf B. R., Rehm H. L. Connexin 26 studies in patients with sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 2001 Sep;127(9):1037–1042. doi: 10.1001/archotol.127.9.1037. [DOI] [PubMed] [Google Scholar]
  19. Kenneson Aileen, Van Naarden Braun Kim, Boyle Coleen. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet Med. 2002 Jul-Aug;4(4):258–274. doi: 10.1097/00125817-200207000-00004. [DOI] [PubMed] [Google Scholar]
  20. Lee M. J., Rhee S. K. Heteromeric gap junction channels in rat hepatocytes in which the expression of connexin26 is induced. Mol Cells. 1998 Jun 30;8(3):295–300. [PubMed] [Google Scholar]
  21. Liu Xue Zhong, Xia Xia Juan, Ke Xiao Mei, Ouyang Xiao Mei, Du Li Lin, Liu Yu He, Angeli Simon, Telischi Fred F., Nance Walter E., Balkany Thomas. The prevalence of connexin 26 ( GJB2) mutations in the Chinese population. Hum Genet. 2002 Aug 16;111(4-5):394–397. doi: 10.1007/s00439-002-0811-6. [DOI] [PubMed] [Google Scholar]
  22. Löffler J., Nekahm D., Hirst-Stadlmann A., Günther B., Menzel H. J., Utermann G., Janecke A. R. Sensorineural hearing loss and the incidence of Cx26 mutations in Austria. Eur J Hum Genet. 2001 Mar;9(3):226–230. doi: 10.1038/sj.ejhg.5200607. [DOI] [PubMed] [Google Scholar]
  23. Marlin S., Garabédian E. N., Roger G., Moatti L., Matha N., Lewin P., Petit C., Denoyelle F. Connexin 26 gene mutations in congenitally deaf children: pitfalls for genetic counseling. Arch Otolaryngol Head Neck Surg. 2001 Aug;127(8):927–933. doi: 10.1001/archotol.127.8.927. [DOI] [PubMed] [Google Scholar]
  24. Martin P. E., Coleman S. L., Casalotti S. O., Forge A., Evans W. H. Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum Mol Genet. 1999 Dec;8(13):2369–2376. doi: 10.1093/hmg/8.13.2369. [DOI] [PubMed] [Google Scholar]
  25. Mehl A. L., Thomson V. Newborn hearing screening: the great omission. Pediatrics. 1998 Jan;101(1):E4–E4. doi: 10.1542/peds.101.1.e4. [DOI] [PubMed] [Google Scholar]
  26. Mehl Albert L., Thomson Vickie. The Colorado newborn hearing screening project, 1992-1999: on the threshold of effective population-based universal newborn hearing screening. Pediatrics. 2002 Jan;109(1):E7–E7. doi: 10.1542/peds.109.1.e7. [DOI] [PubMed] [Google Scholar]
  27. Morlé L., Bozon M., Alloisio N., Latour P., Vandenberghe A., Plauchu H., Collet L., Edery P., Godet J., Lina-Granade G. A novel C202F mutation in the connexin26 gene (GJB2) associated with autosomal dominant isolated hearing loss. J Med Genet. 2000 May;37(5):368–370. doi: 10.1136/jmg.37.5.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morton N. E. Genetic epidemiology of hearing impairment. Ann N Y Acad Sci. 1991;630:16–31. doi: 10.1111/j.1749-6632.1991.tb19572.x. [DOI] [PubMed] [Google Scholar]
  29. Mueller R. F., Nehammer A., Middleton A., Houseman M., Taylor G. R., Bitner-Glindzciz M., Van Camp G., Parker M., Young I. D., Davis A. Congenital non-syndromal sensorineural hearing impairment due to connexin 26 gene mutations--molecular and audiological findings. Int J Pediatr Otorhinolaryngol. 1999 Oct 15;50(1):3–13. doi: 10.1016/s0165-5876(99)00242-6. [DOI] [PubMed] [Google Scholar]
  30. Murgia A., Orzan E., Polli R., Martella M., Vinanzi C., Leonardi E., Arslan E., Zacchello F. Cx26 deafness: mutation analysis and clinical variability. J Med Genet. 1999 Nov;36(11):829–832. [PMC free article] [PubMed] [Google Scholar]
  31. Orzan E., Polli R., Martella M., Vinanzi C., Leonardi M., Murgia A. Molecular genetics applied to clinical practice: the Cx26 hearing impairment. Br J Audiol. 1999 Oct;33(5):291–295. doi: 10.3109/03005369909090112. [DOI] [PubMed] [Google Scholar]
  32. Pampanos Andreas, Economides John, Iliadou Vassiliki, Neou Polyxeni, Leotsakos Paulos, Voyiatzis Nikolaos, Eleftheriades Nikolaos, Tsakanikos Michael, Antoniadi Thalia, Hatzaki Angeliki. Prevalence of GJB2 mutations in prelingual deafness in the Greek population. Int J Pediatr Otorhinolaryngol. 2002 Sep 2;65(2):101–108. doi: 10.1016/s0165-5876(02)00177-5. [DOI] [PubMed] [Google Scholar]
  33. Prasad S., Cucci R. A., Green G. E., Smith R. J. Genetic testing for hereditary hearing loss: connexin 26 (GJB2) allele variants and two novel deafness-causing mutations (R32C and 645-648delTAGA). Hum Mutat. 2000 Dec;16(6):502–508. doi: 10.1002/1098-1004(200012)16:6<502::AID-HUMU7>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  34. Rabionet R., Zelante L., López-Bigas N., D'Agruma L., Melchionda S., Restagno G., Arbonés M. L., Gasparini P., Estivill X. Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene. Hum Genet. 2000 Jan;106(1):40–44. doi: 10.1007/s004390051007. [DOI] [PubMed] [Google Scholar]
  35. Richard G., White T. W., Smith L. E., Bailey R. A., Compton J. G., Paul D. L., Bale S. J. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum Genet. 1998 Oct;103(4):393–399. doi: 10.1007/s004390050839. [DOI] [PubMed] [Google Scholar]
  36. Scott D. A., Kraft M. L., Carmi R., Ramesh A., Elbedour K., Yairi Y., Srisailapathy C. R., Rosengren S. S., Markham A. F., Mueller R. F. Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. Hum Mutat. 1998;11(5):387–394. doi: 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  37. Shahin Hashem, Walsh Tom, Sobe Tama, Lynch Eric, King Mary-Claire, Avraham Karen B., Kanaan Moien. Genetics of congenital deafness in the Palestinian population: multiple connexin 26 alleles with shared origins in the Middle East. Hum Genet. 2002 Feb 8;110(3):284–289. doi: 10.1007/s00439-001-0674-2. [DOI] [PubMed] [Google Scholar]
  38. Stauffer K. A. The gap junction proteins beta 1-connexin (connexin-32) and beta 2-connexin (connexin-26) can form heteromeric hemichannels. J Biol Chem. 1995 Mar 24;270(12):6768–6772. [PubMed] [Google Scholar]
  39. Thönnissen Eva, Rabionet Raquel, Arbonès Maria Lourdes, Estivill Xavier, Willecke Klaus, Ott Thomas. Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet. 2002 Jun 22;111(2):190–197. doi: 10.1007/s00439-002-0750-2. [DOI] [PubMed] [Google Scholar]
  40. Van Laer L., Coucke P., Mueller R. F., Caethoven G., Flothmann K., Prasad S. D., Chamberlin G. P., Houseman M., Taylor G. R., Van de Heyning C. M. A common founder for the 35delG GJB2 gene mutation in connexin 26 hearing impairment. J Med Genet. 2001 Aug;38(8):515–518. doi: 10.1136/jmg.38.8.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wang Hung-Li, Chang Wen-Teng, Li Allen H., Yeh Tu-Hsueh, Wu Ching-Yi, Chen Mei-Shin, Huang Pei-Chen. Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem. 2003 Feb;84(4):735–742. doi: 10.1046/j.1471-4159.2003.01555.x. [DOI] [PubMed] [Google Scholar]
  42. White T. W., Deans M. R., Kelsell D. P., Paul D. L. Connexin mutations in deafness. Nature. 1998 Aug 13;394(6694):630–631. doi: 10.1038/29202. [DOI] [PubMed] [Google Scholar]
  43. Wilcox S. A., Saunders K., Osborn A. H., Arnold A., Wunderlich J., Kelly T., Collins V., Wilcox L. J., McKinlay Gardner R. J., Kamarinos M. High frequency hearing loss correlated with mutations in the GJB2 gene. Hum Genet. 2000 Apr;106(4):399–405. doi: 10.1007/s004390000273. [DOI] [PubMed] [Google Scholar]
  44. Zelante L., Gasparini P., Estivill X., Melchionda S., D'Agruma L., Govea N., Milá M., Monica M. D., Lutfi J., Shohat M. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet. 1997 Sep;6(9):1605–1609. doi: 10.1093/hmg/6.9.1605. [DOI] [PubMed] [Google Scholar]
  45. Zoll Barbara, Petersen Lars, Lange Katrin, Gabriel Peter, Kiese-Himmel Christiane, Rausch Peter, Berger Joachim, Pasche Bastian, Meins Moritz, Gross Manfred. Evaluation of Cx26/GJB2 in German hearing impaired persons: mutation spectrum and detection of disequilibrium between M34T (c.101T>C) and -493del10. Hum Mutat. 2003 Jan;21(1):98–98. doi: 10.1002/humu.9098. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES