Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Oct;63(10):4046–4053. doi: 10.1128/iai.63.10.4046-4053.1995

Activation of human endothelial cells by viable or heat-killed gram-negative bacteria requires soluble CD14.

R F Noel Jr 1, T T Sato 1, C Mendez 1, M C Johnson 1, T H Pohlman 1
PMCID: PMC173569  PMID: 7558318

Abstract

In response to bacterial lipopolysaccharides (LPS; endotoxin), endothelial cells are converted to an activation phenotype expressing both proinflammatory and procoagulant properties that include the induction of leukocyte adhesion molecules and tissue factor expression. LPS-induced endothelial cell activation requires a soluble form of the monocyte LPS receptor, sCD14. We evaluated the capacity of multiple strains of gram-negative and gram-positive bacteria to induce endothelial E-selectin and tissue factor expression through sCD14-dependent pathways with cultured human umbilical vein endothelial cells (HUVE). Both viable and heat-killed gram-negative bacteria (Bacteroides fragilis, Enterobacter cloacae, Haemophilus influenzae, and Klebsiella pneumoniae) but not viable or heat-killed gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pneumoniae) induced prominent E-selectin surface expression detected by enzyme-linked immunosorbent assay. Tissue factor activity on HUVE, indicated by factor X activation, was induced in response to gram-negative bacteria but not in response to gram-positive bacteria. Gram-negative bacteria induced transcriptional activation in HUVE, indicated by the appearance of E-selectin-specific mRNA and by the demonstration of activation of NF-kappa B, a trans-activating factor necessary for E-selectin and tissue factor gene transcription. In contrast, neither E-selectin mRNA nor activation of NF-kappa B was detected in HUVE treated with gram-positive bacteria. Endothelial cell activation by gram-negative bacteria in each of these assays was inhibited with a monoclonal antibody (60bd) against CD14. Furthermore, CHO-K1 cells, transfected with human recombinant CD14, responded to all strains of gram-negative bacteria (viable or heat killed), indicated by CHO-K1 NF-kappa B activation. We conclude that gram-negative bacteria induce endothelial cell activation through a common sCD14-dependent pathway.

Full Text

The Full Text of this article is available as a PDF (425.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arditi M., Zhou J., Dorio R., Rong G. W., Goyert S. M., Kim K. S. Endotoxin-mediated endothelial cell injury and activation: role of soluble CD14. Infect Immun. 1993 Aug;61(8):3149–3156. doi: 10.1128/iai.61.8.3149-3156.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumann H., Tzianabos A. O., Brisson J. R., Kasper D. L., Jennings H. J. Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy. Biochemistry. 1992 Apr 28;31(16):4081–4089. doi: 10.1021/bi00131a026. [DOI] [PubMed] [Google Scholar]
  3. Beekhuizen H., Blokland I., Corsèl-van Tilburg A. J., Koning F., van Furth R. CD14 contributes to the adherence of human monocytes to cytokine-stimulated endothelial cells. J Immunol. 1991 Dec 1;147(11):3761–3767. [PubMed] [Google Scholar]
  4. Bone R. C. Gram-positive organisms and sepsis. Arch Intern Med. 1994 Jan 10;154(1):26–34. [PubMed] [Google Scholar]
  5. Bull B. S., Bull M. H. Hypothesis: disseminated intravascular inflammation as the inflammatory counterpart to disseminated intravascular coagulation. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8190–8194. doi: 10.1073/pnas.91.17.8190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cotran R. S., Pober J. S. Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J Am Soc Nephrol. 1990 Sep;1(3):225–235. doi: 10.1681/ASN.V13225. [DOI] [PubMed] [Google Scholar]
  8. Delude R. L., Fenton M. J., Savedra R., Jr, Perera P. Y., Vogel S. N., Thieringer R., Golenbock D. T. CD14-mediated translocation of nuclear factor-kappa B induced by lipopolysaccharide does not require tyrosine kinase activity. J Biol Chem. 1994 Sep 2;269(35):22253–22260. [PubMed] [Google Scholar]
  9. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duchow J., Marchant A., Crusiaux A., Husson C., Alonso-Vega C., De Groote D., Neve P., Goldman M. Impaired phagocyte responses to lipopolysaccharide in paroxysmal nocturnal hemoglobinuria. Infect Immun. 1993 Oct;61(10):4280–4285. doi: 10.1128/iai.61.10.4280-4285.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., Wright S. D. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992 Dec 1;176(6):1665–1671. doi: 10.1084/jem.176.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gallay P., Heumann D., Le Roy D., Barras C., Glauser M. P. Lipopolysaccharide-binding protein as a major plasma protein responsible for endotoxemic shock. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9935–9938. doi: 10.1073/pnas.90.21.9935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gallay P., Heumann D., Le Roy D., Barras C., Glauser M. P. Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7922–7926. doi: 10.1073/pnas.91.17.7922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Geelen S., Bhattacharyya C., Tuomanen E. Induction of procoagulant activity on human endothelial cells by Streptococcus pneumoniae. Infect Immun. 1992 Oct;60(10):4179–4183. doi: 10.1128/iai.60.10.4179-4183.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Golenbock D. T., Liu Y., Millham F. H., Freeman M. W., Zoeller R. A. Surface expression of human CD14 in Chinese hamster ovary fibroblasts imparts macrophage-like responsiveness to bacterial endotoxin. J Biol Chem. 1993 Oct 15;268(29):22055–22059. [PubMed] [Google Scholar]
  16. Han J., Lee J. D., Bibbs L., Ulevitch R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug 5;265(5173):808–811. doi: 10.1126/science.7914033. [DOI] [PubMed] [Google Scholar]
  17. Haziot A., Rong G. W., Silver J., Goyert S. M. Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J Immunol. 1993 Aug 1;151(3):1500–1507. [PubMed] [Google Scholar]
  18. Kasper D. L., Seiler M. W. Immunochemical characterization of the outer membrane complex of Bacteroides fragilis subspecies fragilis. J Infect Dis. 1975 Oct;132(4):440–450. doi: 10.1093/infdis/132.4.440. [DOI] [PubMed] [Google Scholar]
  19. Kirkland T. N., Finley F., Leturcq D., Moriarty A., Lee J. D., Ulevitch R. J., Tobias P. S. Analysis of lipopolysaccharide binding by CD14. J Biol Chem. 1993 Nov 25;268(33):24818–24823. [PubMed] [Google Scholar]
  20. Lee P. K., Vercellotti G. M., Deringer J. R., Schlievert P. M. Effects of staphylococcal toxic shock syndrome toxin 1 on aortic endothelial cells. J Infect Dis. 1991 Oct;164(4):711–719. doi: 10.1093/infdis/164.4.711. [DOI] [PubMed] [Google Scholar]
  21. Magnuson D. K., Weintraub A., Pohlman T. H., Maier R. V. Human endothelial cell adhesiveness for neutrophils, induced by Escherichia coli lipopolysaccharide in vitro, is inhibited by Bacteroides fragilis lipopolysaccharide. J Immunol. 1989 Nov 1;143(9):3025–3030. [PubMed] [Google Scholar]
  22. Manthey C. L., Vogel S. N. Interactions of lipopolysaccharide with macrophages. Immunol Ser. 1994;60:63–81. [PubMed] [Google Scholar]
  23. Mathison J. C., Tobias P. S., Wolfson E., Ulevitch R. J. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J Immunol. 1992 Jul 1;149(1):200–206. [PubMed] [Google Scholar]
  24. Montgomery K. F., Osborn L., Hession C., Tizard R., Goff D., Vassallo C., Tarr P. I., Bomsztyk K., Lobb R., Harlan J. M. Activation of endothelial-leukocyte adhesion molecule 1 (ELAM-1) gene transcription. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6523–6527. doi: 10.1073/pnas.88.15.6523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pantosti A., Tzianabos A. O., Onderdonk A. B., Kasper D. L. Immunochemical characterization of two surface polysaccharides of Bacteroides fragilis. Infect Immun. 1991 Jun;59(6):2075–2082. doi: 10.1128/iai.59.6.2075-2082.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parker T. S., Levine D. M., Chang J. C., Laxer J., Coffin C. C., Rubin A. L. Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood. Infect Immun. 1995 Jan;63(1):253–258. doi: 10.1128/iai.63.1.253-258.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pober J. S., Cotran R. S. Cytokines and endothelial cell biology. Physiol Rev. 1990 Apr;70(2):427–451. doi: 10.1152/physrev.1990.70.2.427. [DOI] [PubMed] [Google Scholar]
  28. Pober J. S., Cotran R. S. The role of endothelial cells in inflammation. Transplantation. 1990 Oct;50(4):537–544. doi: 10.1097/00007890-199010000-00001. [DOI] [PubMed] [Google Scholar]
  29. Pohlman T. H., Munford R. S., Harlan J. M. Deacylated lipopolysaccharide inhibits neutrophil adherence to endothelium induced by lipopolysaccharide in vitro. J Exp Med. 1987 May 1;165(5):1393–1402. doi: 10.1084/jem.165.5.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pugin J., Heumann I. D., Tomasz A., Kravchenko V. V., Akamatsu Y., Nishijima M., Glauser M. P., Tobias P. S., Ulevitch R. J. CD14 is a pattern recognition receptor. Immunity. 1994 Sep;1(6):509–516. doi: 10.1016/1074-7613(94)90093-0. [DOI] [PubMed] [Google Scholar]
  31. Pugin J., Schürer-Maly C. C., Leturcq D., Moriarty A., Ulevitch R. J., Tobias P. S. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2744–2748. doi: 10.1073/pnas.90.7.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Read M. A., Cordle S. R., Veach R. A., Carlisle C. D., Hawiger J. Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9887–9891. doi: 10.1073/pnas.90.21.9887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reusch V. M., Jr Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall. Crit Rev Microbiol. 1984;11(2):129–155. doi: 10.3109/10408418409105475. [DOI] [PubMed] [Google Scholar]
  34. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., Ulevitch R. J. Structure and function of lipopolysaccharide binding protein. Science. 1990 Sep 21;249(4975):1429–1431. doi: 10.1126/science.2402637. [DOI] [PubMed] [Google Scholar]
  35. Shockman G. D., Barrett J. F. Structure, function, and assembly of cell walls of gram-positive bacteria. Annu Rev Microbiol. 1983;37:501–527. doi: 10.1146/annurev.mi.37.100183.002441. [DOI] [PubMed] [Google Scholar]
  36. Suttorp N., Buerke M., Tannert-Otto S. Stimulation of PAF-synthesis in pulmonary artery endothelial cells by Staphylococcus aureus alpha-toxin. Thromb Res. 1992 Jul 15;67(2):243–252. doi: 10.1016/0049-3848(92)90143-x. [DOI] [PubMed] [Google Scholar]
  37. Theofan G., Horwitz A. H., Williams R. E., Liu P. S., Chan I., Birr C., Carroll S. F., Mészáros K., Parent J. B., Kasler H. An amino-terminal fragment of human lipopolysaccharide-binding protein retains lipid A binding but not CD14-stimulatory activity. J Immunol. 1994 Apr 1;152(7):3623–3629. [PubMed] [Google Scholar]
  38. Tobias P. S., Gegner J., Han J., Kirkland T., Kravchenko V., Leturcq D., Lee J. D., Moriarty A., Mathison J. C., Pugin J. LPS binding protein and CD14 in the LPS dependent activation of cells. Prog Clin Biol Res. 1994;388:31–39. [PubMed] [Google Scholar]
  39. Tobias P. S., Mathison J. C., Ulevitch R. J. A family of lipopolysaccharide binding proteins involved in responses to gram-negative sepsis. J Biol Chem. 1988 Sep 25;263(27):13479–13481. [PubMed] [Google Scholar]
  40. Tobias P. S., Mathison J., Mintz D., Lee J. D., Kravchenko V., Kato K., Pugin J., Ulevitch R. J. Participation of lipopolysaccharide-binding protein in lipopolysaccharide-dependent macrophage activation. Am J Respir Cell Mol Biol. 1992 Sep;7(3):239–245. doi: 10.1165/ajrcmb/7.3.239. [DOI] [PubMed] [Google Scholar]
  41. Tobias P. S., Ulevitch R. J. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology. 1993 Apr;187(3-5):227–232. doi: 10.1016/S0171-2985(11)80341-4. [DOI] [PubMed] [Google Scholar]
  42. Tobias P. S., Ulevitch R. J. Lipopolysaccharide-binding protein and CD14 in the lipopolysaccharide-dependent activation of cells. Chest. 1994 Mar;105(3 Suppl):48S–50S. doi: 10.1378/chest.105.3.48s. [DOI] [PubMed] [Google Scholar]
  43. Tufano M. A., Biancone L., Rossano F., Capasso C., Baroni A., De Martino A., Iorio E. L., Silvestro L., Camussi G. Outer-membrane porins from gram-negative bacteria stimulate platelet-activating-factor biosynthesis by cultured human endothelial cells. Eur J Biochem. 1993 Jun 15;214(3):685–693. doi: 10.1111/j.1432-1033.1993.tb17969.x. [DOI] [PubMed] [Google Scholar]
  44. Tzianabos A. O., Onderdonk A. B., Zaleznik D. F., Smith R. S., Kasper D. L. Structural characteristics of polysaccharides that induce protection against intra-abdominal abscess formation. Infect Immun. 1994 Nov;62(11):4881–4886. doi: 10.1128/iai.62.11.4881-4886.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tzianabos A. O., Pantosti A., Baumann H., Brisson J. R., Jennings H. J., Kasper D. L. The capsular polysaccharide of Bacteroides fragilis comprises two ionically linked polysaccharides. J Biol Chem. 1992 Sep 5;267(25):18230–18235. [PubMed] [Google Scholar]
  46. Tzianabos A. O., Pantosti A., Baumann H., Michon F., Brisson J. R., Jennings H. J., Kasper D. L. Structural characterization of two surface polysaccharides of Bacteroides fragilis. Trans Assoc Am Physicians. 1991;104:285–295. [PubMed] [Google Scholar]
  47. Ulevitch R. J. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993;53:267–289. doi: 10.1016/s0065-2776(08)60502-7. [DOI] [PubMed] [Google Scholar]
  48. Ulevitch R. J., Tobias P. S. Recognition of endotoxin by cells leading to transmembrane signaling. Curr Opin Immunol. 1994 Feb;6(1):125–130. doi: 10.1016/0952-7915(94)90043-4. [DOI] [PubMed] [Google Scholar]
  49. Wall R. T., Harker L. A., Quadracci L. J., Striker G. E. Factors influencing endothelial cell proliferation in vitro. J Cell Physiol. 1978 Aug;96(2):203–213. doi: 10.1002/jcp.1040960209. [DOI] [PubMed] [Google Scholar]
  50. Yeh E. T., Rosse W. F. Paroxysmal nocturnal hemoglobinuria and the glycosylphosphatidylinositol anchor. J Clin Invest. 1994 Jun;93(6):2305–2310. doi: 10.1172/JCI117234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ziegler-Heitbrock H. W., Ulevitch R. J. CD14: cell surface receptor and differentiation marker. Immunol Today. 1993 Mar;14(3):121–125. doi: 10.1016/0167-5699(93)90212-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES