Abstract
Several clinical and laboratory isolates of Candida albicans have a natural blue surface fluorescence when cultured and observed with sensitive optics. The localization and color of the fluorescence are similar to those of the natural fluorescence of sporulated Saccharomyces cerevisiae which is caused by the generation and surface deposition of the cross-linking amino acid dityrosine. In S. cerevisiae, dityrosine production results from the direct action of at least two genes and is responsible for resistance of the ascospores to lytic enzymes and physicochemical trauma. Among the criteria for the identification of dityrosine is pH sensitivity of the fluorescence intensity and a highly characteristic shift of the fluorescence excitation maximum with a change in pH. Video microscopy of whole Candida organisms revealed the characteristic dityrosine intensity maximum at pH approximately 10 and the intensity minimum at pH approximately 2. Separation of an acid hydrolysate of Candida cell walls by reverse-phase high-performance liquid chromatography revealed a fluorescence peak that coelutes with the reagent dityrosine. At pH approximately 10, this peak has a fluorescence excitation maximum of 320 to 325 nm, while at pH approximately 2, the excitation maximum is 285 to 290 nm. This excitation maximum shift and the observed emission maximum of approximately 410 nm are characteristic of dityrosine. Two separate strains of C. albicans were injected intraperitoneally into mice and harvested at 24 h. Blue surface fluorescence was observed, suggesting that dityrosine generation occurs in vivo as well as in vitro. This is the first report of the presence of dityrosine in a human fungal pathogen.
Full Text
The Full Text of this article is available as a PDF (701.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amadò R., Aeschbach R., Neukom H. Dityrosine: in vitro production and characterization. Methods Enzymol. 1984;107:377–388. doi: 10.1016/0076-6879(84)07026-9. [DOI] [PubMed] [Google Scholar]
- Au-Young J., Robbins P. W. Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol. 1990 Feb;4(2):197–207. doi: 10.1111/j.1365-2958.1990.tb00587.x. [DOI] [PubMed] [Google Scholar]
- Boone C., Sdicu A., Laroche M., Bussey H. Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall beta-glucan synthesis. J Bacteriol. 1991 Nov;173(21):6859–6864. doi: 10.1128/jb.173.21.6859-6864.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briza P., Breitenbach M., Ellinger A., Segall J. Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes Dev. 1990 Oct;4(10):1775–1789. doi: 10.1101/gad.4.10.1775. [DOI] [PubMed] [Google Scholar]
- Briza P., Eckerstorfer M., Breitenbach M. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4524–4528. doi: 10.1073/pnas.91.10.4524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briza P., Ellinger A., Winkler G., Breitenbach M. Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls. J Biol Chem. 1990 Sep 5;265(25):15118–15123. [PubMed] [Google Scholar]
- Briza P., Ellinger A., Winkler G., Breitenbach M. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem. 1988 Aug 15;263(23):11569–11574. [PubMed] [Google Scholar]
- Briza P., Winkler G., Kalchhauser H., Breitenbach M. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem. 1986 Mar 25;261(9):4288–4294. [PubMed] [Google Scholar]
- Calderone R. A., Braun P. C. Adherence and receptor relationships of Candida albicans. Microbiol Rev. 1991 Mar;55(1):1–20. doi: 10.1128/mr.55.1.1-20.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cannon R. D., Niimi K., Jenkinson H. F., Shepherd M. G. Molecular cloning and expression of the Candida albicans beta-N-acetylglucosaminidase (HEX1) gene. J Bacteriol. 1994 May;176(9):2640–2647. doi: 10.1128/jb.176.9.2640-2647.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers R. S., Broughton M. J., Cannon R. D., Carne A., Emerson G. W., Sullivan P. A. An exo-beta-(1,3)-glucanase of Candida albicans: purification of the enzyme and molecular cloning of the gene. J Gen Microbiol. 1993 Feb;139(2):325–334. doi: 10.1099/00221287-139-2-325. [DOI] [PubMed] [Google Scholar]
- Chen-Wu J. L., Zwicker J., Bowen A. R., Robbins P. W. Expression of chitin synthase genes during yeast and hyphal growth phases of Candida albicans. Mol Microbiol. 1992 Feb;6(4):497–502. doi: 10.1111/j.1365-2958.1992.tb01494.x. [DOI] [PubMed] [Google Scholar]
- Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
- Deits T., Farrance M., Kay E. S., Medill L., Turner E. E., Weidman P. J., Shapiro B. M. Purification and properties of ovoperoxidase, the enzyme responsible for hardening the fertilization membrane of the sea urchin egg. J Biol Chem. 1984 Nov 10;259(21):13525–13533. [PubMed] [Google Scholar]
- Diamond R. D., Krzesicki R., Jao W. Damage to pseudohyphal forms of Candida albicans by neutrophils in the absence of serum in vitro. J Clin Invest. 1978 Feb;61(2):349–359. doi: 10.1172/JCI108945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elorza M. V., Murgui A., Sentandreu R. Dimorphism in Candida albicans: contribution of mannoproteins to the architecture of yeast and mycelial cell walls. J Gen Microbiol. 1985 Sep;131(9):2209–2216. doi: 10.1099/00221287-131-9-2209. [DOI] [PubMed] [Google Scholar]
- Fetterer R. H., Rhoads M. L. Tyrosine-derived cross-linking amino acids in the sheath of Haemonchus contortus infective larvae. J Parasitol. 1990 Oct;76(5):619–624. [PubMed] [Google Scholar]
- Garcia-Castineiras S., Dillon J., Spector A. Detection of bityrosine in cataractous human lens protein. Science. 1978 Feb 24;199(4331):897–899. doi: 10.1126/science.622574. [DOI] [PubMed] [Google Scholar]
- Gow N. A., Robbins P. W., Lester J. W., Brown A. J., Fonzi W. A., Chapman T., Kinsman O. S. A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6216–6220. doi: 10.1073/pnas.91.13.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenfield R. A. Host defense system interactions with Candida. J Med Vet Mycol. 1992;30(2):89–104. [PubMed] [Google Scholar]
- Hector R. F. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev. 1993 Jan;6(1):1–21. doi: 10.1128/cmr.6.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinecke J. W., Li W., Daehnke H. L., 3rd, Goldstein J. A. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem. 1993 Feb 25;268(6):4069–4077. [PubMed] [Google Scholar]
- Heinecke J. W., Li W., Francis G. A., Goldstein J. A. Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest. 1993 Jun;91(6):2866–2872. doi: 10.1172/JCI116531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikugawa K., Kato T., Hayasaka A. Formation of dityrosine and other fluorescent amino acids by reaction of amino acids with lipid hydroperoxides. Lipids. 1991 Nov;26(11):922–929. doi: 10.1007/BF02535978. [DOI] [PubMed] [Google Scholar]
- Lassandro F., Sebastiano M., Zei F., Bazzicalupo P. The role of dityrosine formation in the crosslinking of CUT-2, the product of a second cuticlin gene of Caenorhabditis elegans. Mol Biochem Parasitol. 1994 May;65(1):147–159. doi: 10.1016/0166-6851(94)90123-6. [DOI] [PubMed] [Google Scholar]
- Marcilla A., Elorza M. V., Mormeneo S., Rico H., Sentandreu R. Candida albicans mycelial wall structure: supramolecular complexes released by zymolyase, chitinase and beta-mercaptoethanol. Arch Microbiol. 1991;155(4):312–319. doi: 10.1007/BF00243448. [DOI] [PubMed] [Google Scholar]
- Nomura K., Suzuki N., Matsumoto S. Pulcherosine, a novel tyrosine-derived, trivalent cross-linking amino acid from the fertilization envelope of sea urchin embryo. Biochemistry. 1990 May 15;29(19):4525–4534. doi: 10.1021/bi00471a004. [DOI] [PubMed] [Google Scholar]
- Pammer M., Briza P., Ellinger A., Schuster T., Stucka R., Feldmann H., Breitenbach M. DIT101 (CSD2, CAL1), a cell cycle-regulated yeast gene required for synthesis of chitin in cell walls and chitosan in spore walls. Yeast. 1992 Dec;8(12):1089–1099. doi: 10.1002/yea.320081211. [DOI] [PubMed] [Google Scholar]
- Pandey N. K., Aronson A. I. Properties of the Bacillus subtilis spore coat. J Bacteriol. 1979 Mar;137(3):1208–1218. doi: 10.1128/jb.137.3.1208-1218.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepherd M. G. Cell envelope of Candida albicans. Crit Rev Microbiol. 1987;15(1):7–25. doi: 10.3109/10408418709104445. [DOI] [PubMed] [Google Scholar]
- Smail E. H., Cronstein B. N., Meshulam T., Esposito A. L., Ruggeri R. W., Diamond R. D. In vitro, Candida albicans releases the immune modulator adenosine and a second, high-molecular weight agent that blocks neutrophil killing. J Immunol. 1992 Jun 1;148(11):3588–3595. [PubMed] [Google Scholar]
- Smail E. H., Jones J. M. Demonstration and solubilization of antigens expressed primarily on the surfaces of Candida albicans germ tubes. Infect Immun. 1984 Jul;45(1):74–81. doi: 10.1128/iai.45.1.74-81.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smail E. H., Kolotila M. P., Ruggeri R., Diamond R. D. Natural inhibitor from Candida albicans blocks release of azurophil and specific granule contents by chemotactic peptide-stimulated human neutrophils. Infect Immun. 1989 Mar;57(3):689–692. doi: 10.1128/iai.57.3.689-692.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smail E. H., Melnick D. A., Ruggeri R., Diamond R. D. A novel natural inhibitor from Candida albicans hyphae causing dissociation of the neutrophil respiratory burst response to chemotactic peptides from other post-activation events. J Immunol. 1988 Jun 1;140(11):3893–3899. [PubMed] [Google Scholar]
- Sudoh M., Nagahashi S., Doi M., Ohta A., Takagi M., Arisawa M. Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Gen Genet. 1993 Nov;241(3-4):351–358. doi: 10.1007/BF00284688. [DOI] [PubMed] [Google Scholar]
- Sugar A. M. Interactions of amphotericin B and SCH 39304 in the treatment of experimental murine candidiasis: lack of antagonism of a polyene-azole combination. Antimicrob Agents Chemother. 1991 Aug;35(8):1669–1671. doi: 10.1128/aac.35.8.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surarit R., Gopal P. K., Shepherd M. G. Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. J Gen Microbiol. 1988 Jun;134(6):1723–1730. doi: 10.1099/00221287-134-6-1723. [DOI] [PubMed] [Google Scholar]
- Tronchin G., Poulain D., Herbaut J., Biguet J. Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultrastructural studies. Eur J Cell Biol. 1981 Dec;26(1):121–128. [PubMed] [Google Scholar]
- Vissers M. C., Winterbourn C. C. Oxidative damage to fibronectin. I. The effects of the neutrophil myeloperoxidase system and HOCl. Arch Biochem Biophys. 1991 Feb 15;285(1):53–59. doi: 10.1016/0003-9861(91)90327-f. [DOI] [PubMed] [Google Scholar]