Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Oct;63(10):4121–4129. doi: 10.1128/iai.63.10.4121-4129.1995

Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities.

G Prévost 1, B Cribier 1, P Couppié 1, P Petiau 1, G Supersac 1, V Finck-Barbançon 1, H Monteil 1, Y Piemont 1
PMCID: PMC173579  PMID: 7558328

Abstract

Staphylococcus aureus ATCC 49775 produces three proteins recognized by affinity-purified antibodies against the S component of Panton-Valentine leucocidin (LukS-PV) and two proteins recognized by affinity-purified antibodies against the F component of this toxin (LukF-PV). Purification of these proteins and cloning of the corresponding genes provided evidence for the presence of two loci. The first one, encoding Panton-Valentine leucocidin, consisted of two cotranscribed open reading frames, lukS-PV and lukF-PV, coding the class S and the class F components, respectively. The second one coded for a gamma-hemolysin and consisted of two transcription units, the first one encoding an HlgA-like protein, a class S component, and the second one encoding two cotranscribed open reading frames identical to HlgC and HlgB, class S and class F components, respectively, from gamma-hemolysin from the reference strain Smith 5R. It appears that the Panton-Valentine leucocidin from S. aureus ATCC 49775 (V8 strain) should not be confused with leucocidin from ATCC 27733 (another isolate of V8 strain), which had 95% identity with HlgC and HlgB from gamma-hemolysin. The cosecretion of these five proteins led to six possible synergistic combinations between F and S components. Two of these combinations (LukS-PV-LukF-PV and HlgA-LukF-PV) had dermonecrotic activity on rabbit skin, and all six were leukocytolytic on glass-adsorbed leukocytes. Only three were hemolytic on rabbit erythrocytes, the two gamma-hemolysin combinations and the combination LukF-PV-HlgA.

Full Text

The Full Text of this article is available as a PDF (547.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Choorit W., Kaneko J., Muramoto K., Kamio Y. Existence of a new protein component with the same function as the LukF component of leukocidin or gamma-hemolysin and its gene in Staphylococcus aureus P83. FEBS Lett. 1995 Jan 9;357(3):260–264. doi: 10.1016/0014-5793(94)01372-8. [DOI] [PubMed] [Google Scholar]
  2. Clyne M., Birkbeck T. H., Arbuthnott J. P. Characterization of staphylococcal gamma-lysin. J Gen Microbiol. 1992 May;138(5):923–930. doi: 10.1099/00221287-138-5-923. [DOI] [PubMed] [Google Scholar]
  3. Colin D. A., Mazurier I., Sire S., Finck-Barbançon V. Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: sequential binding and subsequent activation. Infect Immun. 1994 Aug;62(8):3184–3188. doi: 10.1128/iai.62.8.3184-3188.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooney J., Kienle Z., Foster T. J., O'Toole P. W. The gamma-hemolysin locus of Staphylococcus aureus comprises three linked genes, two of which are identical to the genes for the F and S components of leukocidin. Infect Immun. 1993 Feb;61(2):768–771. doi: 10.1128/iai.61.2.768-771.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Couppie P., Cribier B., Prévost G. Leukocidin from Staphylococcus aureus and cutaneous infections: an epidemiologic study. Arch Dermatol. 1994 Sep;130(9):1208–1209. doi: 10.1001/archderm.130.9.1208. [DOI] [PubMed] [Google Scholar]
  6. Cribier B., Prévost G., Couppie P., Finck-Barbançon V., Grosshans E., Piémont Y. Staphylococcus aureus leukocidin: a new virulence factor in cutaneous infections? An epidemiological and experimental study. Dermatology. 1992;185(3):175–180. doi: 10.1159/000247443. [DOI] [PubMed] [Google Scholar]
  7. Finck-Barbançon V., Duportail G., Meunier O., Colin D. A. Pore formation by a two-component leukocidin from Staphylococcus aureus within the membrane of human polymorphonuclear leukocytes. Biochim Biophys Acta. 1993 Oct 20;1182(3):275–282. doi: 10.1016/0925-4439(93)90069-d. [DOI] [PubMed] [Google Scholar]
  8. Finck-Barbançon V., Prévost G., Piémont Y. Improved purification of leukocidin from Staphylococcus aureus and toxin distribution among hospital strains. Res Microbiol. 1991 Jan;142(1):75–85. doi: 10.1016/0923-2508(91)90099-v. [DOI] [PubMed] [Google Scholar]
  9. GLADSTONE G. P., VAN HEYNINGEN W. E. Staphylococcal leucocidins. Br J Exp Pathol. 1957 Apr;38(2):123–137. [PMC free article] [PubMed] [Google Scholar]
  10. Guyonnet F., Plommet M. Hémolysine gamma de staphylococcus aureus: purification et propriétés. Ann Inst Pasteur (Paris) 1970 Jan;118(1):19–33. [PubMed] [Google Scholar]
  11. Hensler T., König B., Prévost G., Piémont Y., Köller M., König W. Leukotriene B4 generation and DNA fragmentation induced by leukocidin from Staphylococcus aureus: protective role of granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF for human neutrophils. Infect Immun. 1994 Jun;62(6):2529–2535. doi: 10.1128/iai.62.6.2529-2535.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kamio Y., Rahman A., Nariya H., Ozawa T., Izaki K. The two Staphylococcal bi-component toxins, leukocidin and gamma-hemolysin, share one component in common. FEBS Lett. 1993 Apr 19;321(1):15–18. doi: 10.1016/0014-5793(93)80611-w. [DOI] [PubMed] [Google Scholar]
  13. Kato I., Noda M. ADP-ribosylation of cell membrane proteins by staphylococcal alpha-toxin and leukocidin in rabbit erythrocytes and polymorphonuclear leukocytes. FEBS Lett. 1989 Sep 11;255(1):59–62. doi: 10.1016/0014-5793(89)81060-9. [DOI] [PubMed] [Google Scholar]
  14. Kornblum J. S., Projan S. J., Moghazeh S. L., Novick R. P. A rapid method to quantitate non-labeled RNA species in bacterial cells. Gene. 1988;63(1):75–85. doi: 10.1016/0378-1119(88)90547-1. [DOI] [PubMed] [Google Scholar]
  15. König B., Köller M., Prevost G., Piemont Y., Alouf J. E., Schreiner A., König W. Activation of human effector cells by different bacterial toxins (leukocidin, alveolysin, and erythrogenic toxin A): generation of interleukin-8. Infect Immun. 1994 Nov;62(11):4831–4837. doi: 10.1128/iai.62.11.4831-4837.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Noda M., Hirayama T., Kato I., Matsuda F. Crystallization and properties of staphylococcal leukocidin. Biochim Biophys Acta. 1980 Nov 17;633(1):33–44. doi: 10.1016/0304-4165(80)90035-5. [DOI] [PubMed] [Google Scholar]
  18. Noda M., Kato I., Hirayama T., Matsuda F. Fixation and inactivation of staphylococcal leukocidin by phosphatidylcholine and ganglioside GM1 in rabbit polymorphonuclear leukocytes. Infect Immun. 1980 Aug;29(2):678–684. doi: 10.1128/iai.29.2.678-684.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Noda M., Kato I., Matsuda F., Hirayama T. Mode of action of staphylococcal leukocidin: relationship between binding of 125I-labeled S and F components of leukocidin to rabbit polymorphonuclear leukocytes and leukocidin activity. Infect Immun. 1981 Nov;34(2):362–367. doi: 10.1128/iai.34.2.362-367.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Plommet M. Preparation and purification of gamma-hemolysin of staphylococci. Methods Enzymol. 1988;165:8–16. doi: 10.1016/s0076-6879(88)65005-1. [DOI] [PubMed] [Google Scholar]
  21. Prevost G., Couppie P., Prevost P., Gayet S., Petiau P., Cribier B., Monteil H., Piemont Y. Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol. 1995 Apr;42(4):237–245. doi: 10.1099/00222615-42-4-237. [DOI] [PubMed] [Google Scholar]
  22. Rahman A., Izaki K., Kamio Y. Gamma-hemolysin genes in the same family with lukF and lukS genes in methicillin resistant Staphylococcus aureus. Biosci Biotechnol Biochem. 1993 Jul;57(7):1234–1236. doi: 10.1271/bbb.57.1234. [DOI] [PubMed] [Google Scholar]
  23. Rahman A., Nariya H., Izaki K., Kato I., Kamio Y. Molecular cloning and nucleotide sequence of leukocidin F-component gene (lukF) from methicillin resistant Staphylococcus aureus. Biochem Biophys Res Commun. 1992 Apr 30;184(2):640–646. doi: 10.1016/0006-291x(92)90637-z. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Soboll H., Ito A., Schaeg W., Blobel H. Leukozidin von Staphylokokken verschiedener Herkunft. Zentralbl Bakteriol Orig A. 1973 Jul;224(2):184–193. [PubMed] [Google Scholar]
  26. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  27. Supersac G., Prevost G., Piemont Y. Sequencing of leucocidin R from Staphylococcus aureus P83 suggests that staphylococcal leucocidins and gamma-hemolysin are members of a single, two-component family of toxins. Infect Immun. 1993 Feb;61(2):580–587. doi: 10.1128/iai.61.2.580-587.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taylor A. G., Bernheimer A. W. Further characterization of staphylococcal gamma-hemolysin. Infect Immun. 1974 Jul;10(1):54–59. doi: 10.1128/iai.10.1.54-59.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WOODIN A. M. Purification of the two components of leucocidin from Staphylococcus aureus. Biochem J. 1960 Apr;75:158–165. doi: 10.1042/bj0750158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ward P. D., Turner W. H. Identification of staphylococcal Panton-Valentine leukocidin as a potent dermonecrotic toxin. Infect Immun. 1980 May;28(2):393–397. doi: 10.1128/iai.28.2.393-397.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woodin A. M., Wieneke A. A. Role of leucocidin and triphosphoinositide in the control of potassium permeability. Nature. 1968 Oct 19;220(5164):283–286. doi: 10.1038/220283a0. [DOI] [PubMed] [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  36. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES