Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2004 Jun;41(6):401–406. doi: 10.1136/jmg.2003.015073

DFNA5: hearing impairment exon instead of hearing impairment gene?

L Van Laer 1, K Vrijens 1, S Thys 1, V F I Van Tendeloo 1, R Smith 1, D R Van Bockstaele 1, J Timmermans 1, G Van Camp 1
PMCID: PMC1735793  PMID: 15173223

Abstract

Methods: We performed transfection experiments in mammalian cell lines (HEK293T and COS-1) with green fluorescent protein (GFP) tagged wildtype and mutant DFNA5 and analysed cell death with flow cytometry and fluorescence microscopy.

Results: Post-transfection death of HEK293T cells approximately doubled when cells were transfected with mutant DFNA5–GFP compared with wildtype DFNA5–GFP. Cell death was attributed to necrotic events and not to apoptotic events.

Conclusion: The transfection experiments in mammalian cell lines support our hypothesis that the hearing impairment associated with DFNA5 is caused by a "gain of function" mutation and that mutant DFNA5 has a deleterious new function.

Full Text

The Full Text of this article is available as a PDF (219.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benson M. D., Liepnieks J., Uemichi T., Wheeler G., Correa R. Hereditary renal amyloidosis associated with a mutant fibrinogen alpha-chain. Nat Genet. 1993 Mar;3(3):252–255. doi: 10.1038/ng0393-252. [DOI] [PubMed] [Google Scholar]
  2. Bischoff Anne M. L. C., Luijendijk Mirjam W. J., Huygen Patrick L. M., van Duijnhoven Gerard, De Leenheer Els M. R., Oudesluijs Grétel G., Van Laer Lut, Cremers Frans P. M., Cremers Cor W. R. J., Kremer Hannie. A novel mutation identified in the DFNA5 gene in a Dutch family: a clinical and genetic evaluation. Audiol Neurootol. 2004 Jan-Feb;9(1):34–46. doi: 10.1159/000074185. [DOI] [PubMed] [Google Scholar]
  3. Citron M., Oltersdorf T., Haass C., McConlogue L., Hung A. Y., Seubert P., Vigo-Pelfrey C., Lieberburg I., Selkoe D. J. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature. 1992 Dec 17;360(6405):672–674. doi: 10.1038/360672a0. [DOI] [PubMed] [Google Scholar]
  4. Driscoll M., Chalfie M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature. 1991 Feb 14;349(6310):588–593. doi: 10.1038/349588a0. [DOI] [PubMed] [Google Scholar]
  5. Gregan Juraj, Van Laer Lut, Lieto Louis D., Van Camp Guy, Kearsey Stephen E. A yeast model for the study of human DFNA5, a gene mutated in nonsyndromic hearing impairment. Biochim Biophys Acta. 2003 Jul 14;1638(2):179–186. doi: 10.1016/s0925-4439(03)00083-8. [DOI] [PubMed] [Google Scholar]
  6. Hashimoto Makoto, Rockenstein Edward, Masliah Eliezer. Transgenic models of alpha-synuclein pathology: past, present, and future. Ann N Y Acad Sci. 2003 Jun;991:171–188. [PubMed] [Google Scholar]
  7. Housman D. Gain of glutamines, gain of function? Nat Genet. 1995 May;10(1):3–4. doi: 10.1038/ng0595-3. [DOI] [PubMed] [Google Scholar]
  8. Kirby Janine, Menzies Fiona M., Cookson Mark R., Bushby Katherine, Shaw Pamela J. Differential gene expression in a cell culture model of SOD1-related familial motor neurone disease. Hum Mol Genet. 2002 Aug 15;11(17):2061–2075. doi: 10.1093/hmg/11.17.2061. [DOI] [PubMed] [Google Scholar]
  9. Lage H., Helmbach H., Grottke C., Dietel M., Schadendorf D. DFNA5 (ICERE-1) contributes to acquired etoposide resistance in melanoma cells. FEBS Lett. 2001 Apr 6;494(1-2):54–59. doi: 10.1016/s0014-5793(01)02304-3. [DOI] [PubMed] [Google Scholar]
  10. MacDonald M. E., Gusella J. F. Huntington's disease: translating a CAG repeat into a pathogenic mechanism. Curr Opin Neurobiol. 1996 Oct;6(5):638–643. doi: 10.1016/s0959-4388(96)80097-3. [DOI] [PubMed] [Google Scholar]
  11. McInnes R. R., Bascom R. A. Retinal genetics: a nullifying effect for rhodopsin. Nat Genet. 1992 Jun;1(3):155–157. doi: 10.1038/ng0692-155. [DOI] [PubMed] [Google Scholar]
  12. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nucifora Frederick C., Jr, Ellerby Lisa M., Wellington Cheryl L., Wood Jon D., Herring William J., Sawa Akira, Hayden Michael R., Dawson Valina L., Dawson Ted M., Ross Christopher A. Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J Biol Chem. 2002 Dec 2;278(15):13047–13055. doi: 10.1074/jbc.M211224200. [DOI] [PubMed] [Google Scholar]
  14. Pepys M. B., Hawkins P. N., Booth D. R., Vigushin D. M., Tennent G. A., Soutar A. K., Totty N., Nguyen O., Blake C. C., Terry C. J. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553–557. doi: 10.1038/362553a0. [DOI] [PubMed] [Google Scholar]
  15. Van Laer L., Huizing E. H., Verstreken M., van Zuijlen D., Wauters J. G., Bossuyt P. J., Van de Heyning P., McGuirt W. T., Smith R. J., Willems P. J. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat Genet. 1998 Oct;20(2):194–197. doi: 10.1038/2503. [DOI] [PubMed] [Google Scholar]
  16. Vermeulen K., Strnad M., Krystof V., Havlícek L., Van der Aa A., Lenjou M., Nijs G., Rodrigus I., Stockman B., van Onckelen H. Antiproliferative effect of plant cytokinin analogues with an inhibitory activity on cyclin-dependent kinases. Leukemia. 2002 Mar;16(3):299–305. doi: 10.1038/sj.leu.2402378. [DOI] [PubMed] [Google Scholar]
  17. Yu Chuan, Meng Xiangming, Zhang Shanfang, Zhao Guoping, Hu Landian, Kong Xiangyin. A 3-nucleotide deletion in the polypyrimidine tract of intron 7 of the DFNA5 gene causes nonsyndromic hearing impairment in a Chinese family. Genomics. 2003 Nov;82(5):575–579. doi: 10.1016/s0888-7543(03)00175-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES