Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2004 Jun;41(6):413–420. doi: 10.1136/jmg.2003.016352

Non-random asynchronous replication at 22q11.2 favours unequal meiotic crossovers leading to the human 22q11.2 deletion

A Baumer 1, M Riegel 1, A Schinzel 1
PMCID: PMC1735820  PMID: 15173225

Abstract

Background: Analyses of the replication timing at 22q11.2 were prompted by our finding of a statistically significant bias in the origin of the regions flanking the deletion site in patients with 22q11.2 deletions, the proximal region being in the majority of cases of grandmaternal origin. We hypothesised that asynchronous replication may be involved in the formation of the 22q11.2 deletion, the most frequently occurring interstitial deletion in humans, by favouring the mispairing of low-copy repeats.

Methods: Replication timing during S phase at 22q11.2 was investigated by fluorescent in situ hybridisation on interphase nuclei. We report on the detection of non-random asynchronous replication at the human chromosome region 22q11.2, an autosomal locus believed not to contain imprinted genes.

Results: Asynchronous replication at 22q11.2 was observed without exception in all 20 tested individuals; these comprised individuals with structurally normal chromosomes 22 (10 cases), individuals with translocations involving the locus 22q11.2 (eight cases), and patients with a 22q11.2 deletion (two cases). The non-random nature of the asynchronous replication was observed in all individuals for whom the chromosomes 22 were distinguishable. The earlier replicating allele was found to be of paternal origin in all cases where the parental origin of the translocation or deletion was known.

Full Text

The Full Text of this article is available as a PDF (136.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuara Véronique, Brown Karen E., Williams Ruth R. E., Webb Natasha, Dillon Niall, Festenstein Richard, Buckle Veronica, Merkenschlager Matthias, Fisher Amanda G. Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication. Nat Cell Biol. 2003 Jul;5(7):668–674. doi: 10.1038/ncb1006. [DOI] [PubMed] [Google Scholar]
  2. Baumer A., Dutly F., Balmer D., Riegel M., Tükel T., Krajewska-Walasek M., Schinzel A. A. High level of unequal meiotic crossovers at the origin of the 22q11. 2 and 7q11.23 deletions. Hum Mol Genet. 1998 May;7(5):887–894. doi: 10.1093/hmg/7.5.887. [DOI] [PubMed] [Google Scholar]
  3. Bi Weimin, Yan Jiong, Stankiewicz Pawe, Park Sung-Sup, Walz Katherina, Boerkoel Cornelius F., Potocki Lorraine, Shaffer Lisa G., Devriendt Koen, Nowaczyk Magorzata J. M. Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res. 2002 May;12(5):713–728. doi: 10.1101/gr.73702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borde V., Goldman A. S., Lichten M. Direct coupling between meiotic DNA replication and recombination initiation. Science. 2000 Oct 27;290(5492):806–809. doi: 10.1126/science.290.5492.806. [DOI] [PubMed] [Google Scholar]
  5. Cha R. S., Weiner B. M., Keeney S., Dekker J., Kleckner N. Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev. 2000 Feb 15;14(4):493–503. [PMC free article] [PubMed] [Google Scholar]
  6. Chen C., Kolodner R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 1999 Sep;23(1):81–85. doi: 10.1038/12687. [DOI] [PubMed] [Google Scholar]
  7. Chess A., Simon I., Cedar H., Axel R. Allelic inactivation regulates olfactory receptor gene expression. Cell. 1994 Sep 9;78(5):823–834. doi: 10.1016/s0092-8674(94)90562-2. [DOI] [PubMed] [Google Scholar]
  8. Cimbora D. M., Schübeler D., Reik A., Hamilton J., Francastel C., Epner E. M., Groudine M. Long-distance control of origin choice and replication timing in the human beta-globin locus are independent of the locus control region. Mol Cell Biol. 2000 Aug;20(15):5581–5591. doi: 10.1128/mcb.20.15.5581-5591.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devriendt K., Fryns J. P., Mortier G., van Thienen M. N., Keymolen K. The annual incidence of DiGeorge/velocardiofacial syndrome. J Med Genet. 1998 Sep;35(9):789–790. doi: 10.1136/jmg.35.9.789-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dutly F., Schinzel A. Unequal interchromosomal rearrangements may result in elastin gene deletions causing the Williams-Beuren syndrome. Hum Mol Genet. 1996 Dec;5(12):1893–1898. doi: 10.1093/hmg/5.12.1893. [DOI] [PubMed] [Google Scholar]
  11. Edenberg H. J., Huberman J. A. Eukaryotic chromosome replication. Annu Rev Genet. 1975;9:245–284. doi: 10.1146/annurev.ge.09.120175.001333. [DOI] [PubMed] [Google Scholar]
  12. Efstratiadis A. Epigenetics. A new whiff of monoallelic expression. Curr Biol. 1995 Jan 1;5(1):21–24. doi: 10.1016/s0960-9822(95)00007-8. [DOI] [PubMed] [Google Scholar]
  13. Gebhardt Gabriel Stefan, Devriendt Koenraad, Thoelen Reinhilde, Swillen Ann, Pijkels Elly, Fryns Jean-Pierre, Vermeesch Joris R., Gewillig Marc. No evidence for a parental inversion polymorphism predisposing to rearrangements at 22q11.2 in the DiGeorge/Velocardiofacial syndrome. Eur J Hum Genet. 2003 Feb;11(2):109–111. doi: 10.1038/sj.ejhg.5200930. [DOI] [PubMed] [Google Scholar]
  14. Gimelli Giorgio, Pujana Miguel Angel, Patricelli Maria Grazia, Russo Silvia, Giardino Daniela, Larizza Lidia, Cheung Joseph, Armengol Lluís, Schinzel Albert, Estivill Xavier. Genomic inversions of human chromosome 15q11-q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum Mol Genet. 2003 Apr 15;12(8):849–858. doi: 10.1093/hmg/ddg101. [DOI] [PubMed] [Google Scholar]
  15. Hadlaczky G., Went M., Ringertz N. R. Direct evidence for the non-random localization of mammalian chromosomes in the interphase nucleus. Exp Cell Res. 1986 Nov;167(1):1–15. doi: 10.1016/0014-4827(86)90199-0. [DOI] [PubMed] [Google Scholar]
  16. Hager H. D., Schroeder-Kurth T. M., Vogel F. Position of chromosomes in the human interphase nucleus. An analysis of nonhomologous chromatid translocations in lymphocyte cultures after Trenimon treatment and from patients with Fanconi's anemia and Bloom's syndrome. Hum Genet. 1982;61(4):342–356. doi: 10.1007/BF00276599. [DOI] [PubMed] [Google Scholar]
  17. Inoue K., Dewar K., Katsanis N., Reiter L. T., Lander E. S., Devon K. L., Wyman D. W., Lupski J. R., Birren B. The 1.4-Mb CMT1A duplication/HNPP deletion genomic region reveals unique genome architectural features and provides insights into the recent evolution of new genes. Genome Res. 2001 Jun;11(6):1018–1033. doi: 10.1101/gr.180401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kitsberg D., Selig S., Brandeis M., Simon I., Keshet I., Driscoll D. J., Nicholls R. D., Cedar H. Allele-specific replication timing of imprinted gene regions. Nature. 1993 Jul 29;364(6436):459–463. doi: 10.1038/364459a0. [DOI] [PubMed] [Google Scholar]
  19. Kurahashi H., Shaikh T. H., Hu P., Roe B. A., Emanuel B. S., Budarf M. L. Regions of genomic instability on 22q11 and 11q23 as the etiology for the recurrent constitutional t(11;22). Hum Mol Genet. 2000 Jul 1;9(11):1665–1670. doi: 10.1093/hmg/9.11.1665. [DOI] [PubMed] [Google Scholar]
  20. Liapunova N. A. Organization of replication units and DNA replication in mammalian cells as studied by DNA fiber radioautography. Int Rev Cytol. 1994;154:261–308. doi: 10.1016/s0074-7696(08)62201-9. [DOI] [PubMed] [Google Scholar]
  21. Mostoslavsky R., Singh N., Tenzen T., Goldmit M., Gabay C., Elizur S., Qi P., Reubinoff B. E., Chess A., Cedar H. Asynchronous replication and allelic exclusion in the immune system. Nature. 2001 Nov 8;414(6860):221–225. doi: 10.1038/35102606. [DOI] [PubMed] [Google Scholar]
  22. Murakami Hajime, Borde Valerie, Shibata Takehiko, Lichten Michael, Ohta Kunihiro. Correlation between premeiotic DNA replication and chromatin transition at yeast recombination initiation sites. Nucleic Acids Res. 2003 Jul 15;31(14):4085–4090. doi: 10.1093/nar/gkg441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Myung Kyungjae, Pennaneach Vincent, Kats Ellen S., Kolodner Richard D. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci U S A. 2003 May 15;100(11):6640–6645. doi: 10.1073/pnas.1232239100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nogami M., Nogami O., Kagotani K., Okumura M., Taguchi H., Ikemura T., Okumura K. Intranuclear arrangement of human chromosome 12 correlates to large-scale replication domains. Chromosoma. 2000 Mar;108(8):514–522. doi: 10.1007/s004120050403. [DOI] [PubMed] [Google Scholar]
  25. Osborne L. R., Li M., Pober B., Chitayat D., Bodurtha J., Mandel A., Costa T., Grebe T., Cox S., Tsui L. C. A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. Nat Genet. 2001 Nov;29(3):321–325. doi: 10.1038/ng753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parisi S., McKay M. J., Molnar M., Thompson M. A., van der Spek P. J., van Drunen-Schoenmaker E., Kanaar R., Lehmann E., Hoeijmakers J. H., Kohli J. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol. 1999 May;19(5):3515–3528. doi: 10.1128/mcb.19.5.3515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schinzel A. A., Basaran S., Bernasconi F., Karaman B., Yüksel-Apak M., Robinson W. P. Maternal uniparental disomy 22 has no impact on the phenotype. Am J Hum Genet. 1994 Jan;54(1):21–24. [PMC free article] [PubMed] [Google Scholar]
  28. Schmidt M., Migeon B. R. Asynchronous replication of homologous loci on human active and inactive X chromosomes. Proc Natl Acad Sci U S A. 1990 May;87(10):3685–3689. doi: 10.1073/pnas.87.10.3685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Selig S., Okumura K., Ward D. C., Cedar H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 1992 Mar;11(3):1217–1225. doi: 10.1002/j.1460-2075.1992.tb05162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shaikh T. H., Kurahashi H., Saitta S. C., O'Hare A. M., Hu P., Roe B. A., Driscoll D. A., McDonald-McGinn D. M., Zackai E. H., Budarf M. L. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000 Mar 1;9(4):489–501. doi: 10.1093/hmg/9.4.489. [DOI] [PubMed] [Google Scholar]
  31. Simon I., Tenzen T., Reubinoff B. E., Hillman D., McCarrey J. R., Cedar H. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature. 1999 Oct 28;401(6756):929–932. doi: 10.1038/44866. [DOI] [PubMed] [Google Scholar]
  32. Woodfine Kathryn, Fiegler Heike, Beare David M., Collins John E., McCann Owen T., Young Bryan D., Debernardi Silvana, Mott Richard, Dunham Ian, Carter Nigel P. Replication timing of the human genome. Hum Mol Genet. 2003 Nov 25;13(2):191–202. doi: 10.1093/hmg/ddh016. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES