Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2004 Jul;41(7):484–491. doi: 10.1136/jmg.2004.018598

The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations

J Howe 1, M Sayed 1, A Ahmed 1, J Ringold 1, J Larsen-Haidle 1, A Merg 1, F Mitros 1, C Vaccaro 1, G Petersen 1, F Giardiello 1, S Tinley 1, L Aaltonen 1, H Lynch 1
PMCID: PMC1735829  PMID: 15235019

Abstract

Background: Juvenile polyposis (JP) is an autosomal dominant syndrome predisposing to colorectal and gastric cancer. We have identified mutations in two genes causing JP, MADH4 and bone morphogenetic protein receptor 1A (BMPR1A): both are involved in bone morphogenetic protein (BMP) mediated signalling and are members of the TGF-ß superfamily. This study determined the prevalence of mutations in MADH4 and BMPR1A, as well as three other BMP/activin pathway candidate genes in a large number of JP patients.

Methods: DNA was extracted from the blood of JP patients and used for PCR amplification of each exon of these five genes, using primers flanking each intron–exon boundary. Mutations were determined by comparison to wild type sequences using sequence analysis software. A total of 77 JP cases were sequenced for mutations in the MADH4, BMPR1A, BMPR1B, BMPR2, and/or ACVR1 (activin A receptor) genes. The latter three genes were analysed when MADH4 and BMPR1A sequencing found no mutations.

Results: Germline MADH4 mutations were found in 14 cases (18.2%) and BMPR1A mutations in 16 cases (20.8%). No mutations were found in BMPR1B, BMPR2, or ACVR1 in 32 MADH4 and BMPR1A mutation negative cases.

Discussion: In the largest series of JP patients reported to date, the prevalence of germline MADH4 and BMPR1A mutations is approximately 20% for each gene. Since mutations were not found in more than half the JP patients, either additional genes predisposing to JP remain to be discovered, or alternate means of inactivation of the two known genes are responsible for these JP cases.

Full Text

The Full Text of this article is available as a PDF (254.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baert A. L., Casteels-Van Daele M., Broeckx J., Wijndaele L., Wilms G., Eggermont E. Generalized juvenile polyposis with pulmonary arteriovenous malformations and hypertrophic osteoarthropathy. AJR Am J Roentgenol. 1983 Oct;141(4):661–662. doi: 10.2214/ajr.141.4.661. [DOI] [PubMed] [Google Scholar]
  2. Berg J. N., Gallione C. J., Stenzel T. T., Johnson D. W., Allen W. P., Schwartz C. E., Jackson C. E., Porteous M. E., Marchuk D. A. The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am J Hum Genet. 1997 Jul;61(1):60–67. doi: 10.1086/513903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bevan S., Woodford-Richens K., Rozen P., Eng C., Young J., Dunlop M., Neale K., Phillips R., Markie D., Rodriguez-Bigas M. Screening SMAD1, SMAD2, SMAD3, and SMAD5 for germline mutations in juvenile polyposis syndrome. Gut. 1999 Sep;45(3):406–408. doi: 10.1136/gut.45.3.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burt R. W., Bishop D. T., Lynch H. T., Rozen P., Winawer S. J. Risk and surveillance of individuals with heritable factors for colorectal cancer. WHO Collaborating Centre for the Prevention of Colorectal Cancer. Bull World Health Organ. 1990;68(5):655–665. [PMC free article] [PubMed] [Google Scholar]
  5. Cox K. L., Frates R. C., Jr, Wong A., Gandhi G. Hereditary generalized juvenile polyposis associated with pulmonary arteriovenous malformation. Gastroenterology. 1980 Jun;78(6):1566–1570. [PubMed] [Google Scholar]
  6. Dai J. L., Bansal R. K., Kern S. E. G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: phenotypes reversed by a tumorigenic mutation. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1427–1432. doi: 10.1073/pnas.96.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dai J. L., Turnacioglu K. K., Schutte M., Sugar A. Y., Kern S. E. Dpc4 transcriptional activation and dysfunction in cancer cells. Cancer Res. 1998 Oct 15;58(20):4592–4597. [PubMed] [Google Scholar]
  8. Deng Z., Morse J. H., Slager S. L., Cuervo N., Moore K. J., Venetos G., Kalachikov S., Cayanis E., Fischer S. G., Barst R. J. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000 Jul 20;67(3):737–744. doi: 10.1086/303059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dennler S., Itoh S., Vivien D., ten Dijke P., Huet S., Gauthier J. M. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998 Jun 1;17(11):3091–3100. doi: 10.1093/emboj/17.11.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eng C., Ji H. Molecular classification of the inherited hamartoma polyposis syndromes: clearing the muddied waters. Am J Hum Genet. 1998 May;62(5):1020–1022. doi: 10.1086/301847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friedl W., Kruse R., Uhlhaas S., Stolte M., Schartmann B., Keller K. M., Jungck M., Stern M., Loff S., Back W. Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes Cancer. 1999 Aug;25(4):403–406. [PubMed] [Google Scholar]
  12. Friedl Waltraut, Uhlhaas Siegfried, Schulmann Karsten, Stolte Manfred, Loff Steffan, Back Walter, Mangold Elisabeth, Stern Martin, Knaebel Hanns-Peter, Sutter Christian. Juvenile polyposis: massive gastric polyposis is more common in MADH4 mutation carriers than in BMPR1A mutation carriers. Hum Genet. 2002 Jun 13;111(1):108–111. doi: 10.1007/s00439-002-0748-9. [DOI] [PubMed] [Google Scholar]
  13. Hahn S. A., Schutte M., Hoque A. T., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996 Jan 19;271(5247):350–353. doi: 10.1126/science.271.5247.350. [DOI] [PubMed] [Google Scholar]
  14. Heldin C. H., Miyazono K., ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997 Dec 4;390(6659):465–471. doi: 10.1038/37284. [DOI] [PubMed] [Google Scholar]
  15. Houlston R., Bevan S., Williams A., Young J., Dunlop M., Rozen P., Eng C., Markie D., Woodford-Richens K., Rodriguez-Bigas M. A. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum Mol Genet. 1998 Nov;7(12):1907–1912. doi: 10.1093/hmg/7.12.1907. [DOI] [PubMed] [Google Scholar]
  16. Howe J. R., Bair J. L., Sayed M. G., Anderson M. E., Mitros F. A., Petersen G. M., Velculescu V. E., Traverso G., Vogelstein B. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet. 2001 Jun;28(2):184–187. doi: 10.1038/88919. [DOI] [PubMed] [Google Scholar]
  17. Howe J. R., Roth S., Ringold J. C., Summers R. W., Järvinen H. J., Sistonen P., Tomlinson I. P., Houlston R. S., Bevan S., Mitros F. A. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998 May 15;280(5366):1086–1088. doi: 10.1126/science.280.5366.1086. [DOI] [PubMed] [Google Scholar]
  18. Howe James R., Shellnut Jason, Wagner Brian, Ringold John C., Sayed Mohamed G., Ahmed Abul F., Lynch Patrick M., Amos Christopher I., Sistonen Pertti, Aaltonen Lauri A. Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am J Hum Genet. 2002 Mar 27;70(5):1357–1362. doi: 10.1086/340258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jass J. R., Williams C. B., Bussey H. J., Morson B. C. Juvenile polyposis--a precancerous condition. Histopathology. 1988 Dec;13(6):619–630. doi: 10.1111/j.1365-2559.1988.tb02093.x. [DOI] [PubMed] [Google Scholar]
  20. Johnson D. W., Berg J. N., Baldwin M. A., Gallione C. J., Marondel I., Yoon S. J., Stenzel T. T., Speer M., Pericak-Vance M. A., Diamond A. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996 Jun;13(2):189–195. doi: 10.1038/ng0696-189. [DOI] [PubMed] [Google Scholar]
  21. Johnson D. W., Berg J. N., Baldwin M. A., Gallione C. J., Marondel I., Yoon S. J., Stenzel T. T., Speer M., Pericak-Vance M. A., Diamond A. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996 Jun;13(2):189–195. doi: 10.1038/ng0696-189. [DOI] [PubMed] [Google Scholar]
  22. Jones J. B., Kern S. E. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4. Nucleic Acids Res. 2000 Jun 15;28(12):2363–2368. doi: 10.1093/nar/28.12.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kim I. J., Ku J. L., Yoon K. A., Heo S. C., Jeong S. Y., Choi H. S., Hong K. H., Yang S. K., Park J. G. Germline mutations of the dpc4 gene in Korean juvenile polyposis patients. Int J Cancer. 2000 May 15;86(4):529–532. doi: 10.1002/(sici)1097-0215(20000515)86:4<529::aid-ijc14>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  24. Lagna G., Hata A., Hemmati-Brivanlou A., Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996 Oct 31;383(6603):832–836. doi: 10.1038/383832a0. [DOI] [PubMed] [Google Scholar]
  25. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  26. Lynch E. D., Ostermeyer E. A., Lee M. K., Arena J. F., Ji H., Dann J., Swisshelm K., Suchard D., MacLeod P. M., Kvinnsland S. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am J Hum Genet. 1997 Dec;61(6):1254–1260. doi: 10.1086/301639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacGrogan D., Pegram M., Slamon D., Bookstein R. Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene. 1997 Aug 28;15(9):1111–1114. doi: 10.1038/sj.onc.1201232. [DOI] [PubMed] [Google Scholar]
  28. Markowitz S., Wang J., Myeroff L., Parsons R., Sun L., Lutterbaugh J., Fan R. S., Zborowska E., Kinzler K. W., Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995 Jun 2;268(5215):1336–1338. doi: 10.1126/science.7761852. [DOI] [PubMed] [Google Scholar]
  29. Marsh D. J., Coulon V., Lunetta K. L., Rocca-Serra P., Dahia P. L., Zheng Z., Liaw D., Caron S., Duboué B., Lin A. Y. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet. 1998 Mar;7(3):507–515. doi: 10.1093/hmg/7.3.507. [DOI] [PubMed] [Google Scholar]
  30. Marsh D. J., Roth S., Lunetta K. L., Hemminki A., Dahia P. L., Sistonen P., Zheng Z., Caron S., van Orsouw N. J., Bodmer W. F. Exclusion of PTEN and 10q22-24 as the susceptibility locus for juvenile polyposis syndrome. Cancer Res. 1997 Nov 15;57(22):5017–5021. [PubMed] [Google Scholar]
  31. Mehra Arun, Wrana Jeffrey L. TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol. 2002;80(5):605–622. doi: 10.1139/o02-161. [DOI] [PubMed] [Google Scholar]
  32. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morén A., Itoh S., Moustakas A., Dijke P., Heldin C. H. Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene. 2000 Sep 7;19(38):4396–4404. doi: 10.1038/sj.onc.1203798. [DOI] [PubMed] [Google Scholar]
  34. Nakagawa Hidewaki, Yan Hai, Lockman Janet, Hampel Heather, Kinzler Kenneth W., Vogelstein Bert, De La Chapelle Albert. Allele separation facilitates interpretation of potential splicing alterations and genomic rearrangements. Cancer Res. 2002 Aug 15;62(16):4579–4582. [PubMed] [Google Scholar]
  35. Olschwang S., Serova-Sinilnikova O. M., Lenoir G. M., Thomas G. PTEN germ-line mutations in juvenile polyposis coli. Nat Genet. 1998 Jan;18(1):12–14. doi: 10.1038/ng0198-12. [DOI] [PubMed] [Google Scholar]
  36. Pasche B., Kolachana P., Nafa K., Satagopan J., Chen Y. G., Lo R. S., Brener D., Yang D., Kirstein L., Oddoux C. TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999 Nov 15;59(22):5678–5682. [PubMed] [Google Scholar]
  37. Ramirez R. O., Sokol R. J., Hays T., Silverman A. Familial occurrence of cavernous transformation of the portal vein. J Pediatr Gastroenterol Nutr. 1995 Oct;21(3):313–318. doi: 10.1097/00005176-199510000-00010. [DOI] [PubMed] [Google Scholar]
  38. Roth S., Sistonen P., Salovaara R., Hemminki A., Loukola A., Johansson M., Avizienyte E., Cleary K. A., Lynch P., Amos C. I. SMAD genes in juvenile polyposis. Genes Chromosomes Cancer. 1999 Sep;26(1):54–61. doi: 10.1002/(sici)1098-2264(199909)26:1<54::aid-gcc8>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  39. Sachatello C. R., Hahn I. S., Carrington C. B. Juvenile gastrointestinal polyposis in a female infant: report of a case and review of the literature of a recently recognized syndrome. Surgery. 1974 Jan;75(1):107–114. [PubMed] [Google Scholar]
  40. Sayed M. G., Ahmed A. F., Ringold J. R., Anderson M. E., Bair J. L., Mitros F. A., Lynch H. T., Tinley S. T., Petersen G. M., Giardiello F. M. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann Surg Oncol. 2002 Nov;9(9):901–906. doi: 10.1007/BF02557528. [DOI] [PubMed] [Google Scholar]
  41. Schutte M., Hruban R. H., Hedrick L., Cho K. R., Nadasdy G. M., Weinstein C. L., Bova G. S., Isaacs W. B., Cairns P., Nawroz H. DPC4 gene in various tumor types. Cancer Res. 1996 Jun 1;56(11):2527–2530. [PubMed] [Google Scholar]
  42. Shi Y., Hata A., Lo R. S., Massagué J., Pavletich N. P. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997 Jul 3;388(6637):87–93. doi: 10.1038/40431. [DOI] [PubMed] [Google Scholar]
  43. Takagi Y., Kohmura H., Futamura M., Kida H., Tanemura H., Shimokawa K., Saji S. Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology. 1996 Nov;111(5):1369–1372. doi: 10.1053/gast.1996.v111.pm8898652. [DOI] [PubMed] [Google Scholar]
  44. Thiagalingam S., Lengauer C., Leach F. S., Schutte M., Hahn S. A., Overhauser J., Willson J. K., Markowitz S., Hamilton S. R., Kern S. E. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 1996 Jul;13(3):343–346. doi: 10.1038/ng0796-343. [DOI] [PubMed] [Google Scholar]
  45. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  46. Woodford-Richens K., Bevan S., Churchman M., Dowling B., Jones D., Norbury C. G., Hodgson S. V., Desai D., Neale K., Phillips R. K. Analysis of genetic and phenotypic heterogeneity in juvenile polyposis. Gut. 2000 May;46(5):656–660. doi: 10.1136/gut.46.5.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yan Hai, Yuan Weishi, Velculescu Victor E., Vogelstein Bert, Kinzler Kenneth W. Allelic variation in human gene expression. Science. 2002 Aug 16;297(5584):1143–1143. doi: 10.1126/science.1072545. [DOI] [PubMed] [Google Scholar]
  48. Zhou S., Zawel L., Lengauer C., Kinzler K. W., Vogelstein B. Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol Cell. 1998 Jul;2(1):121–127. doi: 10.1016/s1097-2765(00)80120-3. [DOI] [PubMed] [Google Scholar]
  49. Zhou X. P., Woodford-Richens K., Lehtonen R., Kurose K., Aldred M., Hampel H., Launonen V., Virta S., Pilarski R., Salovaara R. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet. 2001 Aug 30;69(4):704–711. doi: 10.1086/323703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. de Caestecker M. P., Yahata T., Wang D., Parks W. T., Huang S., Hill C. S., Shioda T., Roberts A. B., Lechleider R. J. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem. 2000 Jan 21;275(3):2115–2122. doi: 10.1074/jbc.275.3.2115. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES