Abstract
Introduction: Array comparative genomic hybridisation (array CGH) is a powerful method that detects alteration of gene copy number with greater resolution and efficiency than traditional methods. However, its ability to detect disease causing duplications in constitutional genomic DNA has not been shown. We developed an array CGH assay for X linked hypopituitarism, which is associated with duplication of Xq26–q27.
Methods: We generated custom BAC/PAC arrays that spanned the 7.3 Mb critical region at Xq26.1–q27.3, and used them to search for duplications in three previously uncharacterised families with X linked hypopituitarism.
Results: Validation experiments clearly identified Xq26–q27 duplications that we had previously mapped by fluorescence in situ hybridisation. Array CGH analysis of novel XH families identified three different Xq26–q27 duplications, which together refine the critical region to a 3.9 Mb interval at Xq27.2–q27.3. Expression analysis of six orthologous mouse genes from this region revealed that the transcription factor Sox3 is expressed at 11.5 and 12.5 days after conception in the infundibulum of the developing pituitary and the presumptive hypothalamus.
Discussion: Array CGH is a robust and sensitive method for identifying X chromosome duplications. The existence of different, overlapping Xq duplications in five kindreds indicates that X linked hypopituitarism is caused by increased gene dosage. Interestingly, all X linked hypopituitarism duplications contain SOX3. As mutation of this gene in human beings and mice results in hypopituitarism, we hypothesise that increased dosage of Sox3 causes perturbation of pituitary and hypothalamic development and may be the causative mechanism for X linked hypopituitarism.
Full Text
The Full Text of this article is available as a PDF (240.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruder C. E., Hirvelä C., Tapia-Paez I., Fransson I., Segraves R., Hamilton G., Zhang X. X., Evans D. G., Wallace A. J., Baser M. E. High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH. Hum Mol Genet. 2001 Feb 1;10(3):271–282. doi: 10.1093/hmg/10.3.271. [DOI] [PubMed] [Google Scholar]
- Buckley Patrick G., Mantripragada Kiran K., Benetkiewicz Magdalena, Tapia-Páez Isabel, Diaz De Ståhl Teresita, Rosenquist Magnus, Ali Haider, Jarbo Caroline, De Bustos Cecilía, Hirvelä Carina. A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Hum Mol Genet. 2002 Dec 1;11(25):3221–3229. doi: 10.1093/hmg/11.25.3221. [DOI] [PubMed] [Google Scholar]
- Cai Wei-Wen, Mao Jian-Hua, Chow Chi-Wen, Damani Shamsha, Balmain Allan, Bradley Allan. Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nat Biotechnol. 2002 Apr;20(4):393–396. doi: 10.1038/nbt0402-393. [DOI] [PubMed] [Google Scholar]
- Collignon J., Sockanathan S., Hacker A., Cohen-Tannoudji M., Norris D., Rastan S., Stevanovic M., Goodfellow P. N., Lovell-Badge R. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development. 1996 Feb;122(2):509–520. doi: 10.1242/dev.122.2.509. [DOI] [PubMed] [Google Scholar]
- Cushman L. J., Camper S. A. Molecular basis of pituitary dysfunction in mouse and human. Mamm Genome. 2001 Jul;12(7):485–494. doi: 10.1007/s003350040002. [DOI] [PubMed] [Google Scholar]
- Daikoku S., Chikamori M., Adachi T., Maki Y. Effect of the basal diencephalon on the development of Rathke's pouch in rats: a study in combined organ cultures. Dev Biol. 1982 Mar;90(1):198–202. doi: 10.1016/0012-1606(82)90225-1. [DOI] [PubMed] [Google Scholar]
- Dasen J. S., Rosenfeld M. G. Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci. 2001;24:327–355. doi: 10.1146/annurev.neuro.24.1.327. [DOI] [PubMed] [Google Scholar]
- Dattani M. T., Robinson I. C. The molecular basis for developmental disorders of the pituitary gland in man. Clin Genet. 2000 May;57(5):337–346. doi: 10.1034/j.1399-0004.2000.570503.x. [DOI] [PubMed] [Google Scholar]
- Dunwoodie S. L., Henrique D., Harrison S. M., Beddington R. S. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development. 1997 Aug;124(16):3065–3076. doi: 10.1242/dev.124.16.3065. [DOI] [PubMed] [Google Scholar]
- Ericson J., Norlin S., Jessell T. M., Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development. 1998 Mar;125(6):1005–1015. doi: 10.1242/dev.125.6.1005. [DOI] [PubMed] [Google Scholar]
- Gleiberman A. S., Fedtsova N. G., Rosenfeld M. G. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. Dev Biol. 1999 Sep 15;213(2):340–353. doi: 10.1006/dbio.1999.9386. [DOI] [PubMed] [Google Scholar]
- Hamel B. C., Smits A. P., Otten B. J., van den Helm B., Ropers H. H., Mariman E. C. Familial X-linked mental retardation and isolated growth hormone deficiency: clinical and molecular findings. Am J Med Genet. 1996 Jul 12;64(1):35–41. doi: 10.1002/(SICI)1096-8628(19960712)64:1<35::AID-AJMG5>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Hol F. A., Schepens M. T., van Beersum S. E., Redolfi E., Affer M., Vezzoni P., Hamel B. C., Karnes P. S., Mariman E. C., Zucchi I. Identification and characterization of an Xq26-q27 duplication in a family with spina bifida and panhypopituitarism suggests the involvement of two distinct genes. Genomics. 2000 Oct 15;69(2):174–181. doi: 10.1006/geno.2000.6327. [DOI] [PubMed] [Google Scholar]
- Hui Angela Bik-Yu, Lo Kwok-Wai, Teo Peter M. L., To Ka-Fai, Huang Dolly P. Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. Int J Oncol. 2002 Mar;20(3):467–473. [PubMed] [Google Scholar]
- Kimura S., Hara Y., Pineau T., Fernandez-Salguero P., Fox C. H., Ward J. M., Gonzalez F. J. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996 Jan 1;10(1):60–69. doi: 10.1101/gad.10.1.60. [DOI] [PubMed] [Google Scholar]
- Lagerström-Fermér M., Sundvall M., Johnsen E., Warne G. L., Forrest S. M., Zajac J. D., Rickards A., Ravine D., Landegren U., Pettersson U. X-linked recessive panhypopituitarism associated with a regional duplication in Xq25-q26. Am J Hum Genet. 1997 Apr;60(4):910–916. [PMC free article] [PubMed] [Google Scholar]
- Laumonnier Frédéric, Ronce Nathalie, Hamel Ben C. J., Thomas Paul, Lespinasse James, Raynaud Martine, Paringaux Christine, Van Bokhoven Hans, Kalscheuer Vera, Fryns Jean-Pierre. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet. 2002 Nov 8;71(6):1450–1455. doi: 10.1086/344661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H., Zeitler P. S., Valerius M. T., Small K., Potter S. S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J. 1996 Feb 15;15(4):714–724. [PMC free article] [PubMed] [Google Scholar]
- Lindsay R., Feldkamp M., Harris D., Robertson J., Rallison M. Utah Growth Study: growth standards and the prevalence of growth hormone deficiency. J Pediatr. 1994 Jul;125(1):29–35. doi: 10.1016/s0022-3476(94)70117-2. [DOI] [PubMed] [Google Scholar]
- Phelan P. D., Connelly J., Martin F. I., Wettenhall H. N. X-linked recessive hypopituitarism. Birth Defects Orig Artic Ser. 1971 May;7(6):24–27. [PubMed] [Google Scholar]
- Pinkel D., Segraves R., Sudar D., Clark S., Poole I., Kowbel D., Collins C., Kuo W. L., Chen C., Zhai Y. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998 Oct;20(2):207–211. doi: 10.1038/2524. [DOI] [PubMed] [Google Scholar]
- Procter A. M., Phillips J. A., 3rd, Cooper D. N. The molecular genetics of growth hormone deficiency. Hum Genet. 1998 Sep;103(3):255–272. doi: 10.1007/s004390050815. [DOI] [PubMed] [Google Scholar]
- Rizzoti Karine, Brunelli Silvia, Carmignac Danielle, Thomas Paul Q., Robinson Iain C., Lovell-Badge Robin. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet. 2004 Feb 15;36(3):247–255. doi: 10.1038/ng1309. [DOI] [PubMed] [Google Scholar]
- Schimke R. N., Spaulding J. J., Hollowell J. G. X-linked congenital panhypopituitarism. Birth Defects Orig Artic Ser. 1971 May;7(6):21–23. [PubMed] [Google Scholar]
- Snijders A. M., Nowak N., Segraves R., Blackwood S., Brown N., Conroy J., Hamilton G., Hindle A. K., Huey B., Kimura K. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001 Nov;29(3):263–264. doi: 10.1038/ng754. [DOI] [PubMed] [Google Scholar]
- Solinas-Toldo S., Lampel S., Stilgenbauer S., Nickolenko J., Benner A., Döhner H., Cremer T., Lichter P. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997 Dec;20(4):399–407. [PubMed] [Google Scholar]
- Solomon Nicola M., Nouri Sara, Warne Garry L., Lagerström-Fermér Maria, Forrest Susan M., Thomas Paul Q. Increased gene dosage at Xq26-q27 is associated with X-linked hypopituitarism. Genomics. 2002 Apr;79(4):553–559. doi: 10.1006/geno.2002.6741. [DOI] [PubMed] [Google Scholar]
- Stevanović M., Lovell-Badge R., Collignon J., Goodfellow P. N. SOX3 is an X-linked gene related to SRY. Hum Mol Genet. 1993 Dec;2(12):2013–2018. doi: 10.1093/hmg/2.12.2013. [DOI] [PubMed] [Google Scholar]
- Timmerman V., Nelis E., Van Hul W., Nieuwenhuijsen B. W., Chen K. L., Wang S., Ben Othman K., Cullen B., Leach R. J., Hanemann C. O. The peripheral myelin protein gene PMP-22 is contained within the Charcot-Marie-Tooth disease type 1A duplication. Nat Genet. 1992 Jun;1(3):171–175. doi: 10.1038/ng0692-171. [DOI] [PubMed] [Google Scholar]
- Veltman Joris A., Jonkers Yvonne, Nuijten Inge, Janssen Irene, van der Vliet Walter, Huys Erik, Vermeesch Joris, Van Buggenhout Griet, Fryns Jean-Pierre, Admiraal Ronald. Definition of a critical region on chromosome 18 for congenital aural atresia by arrayCGH. Am J Hum Genet. 2003 May 9;72(6):1578–1584. doi: 10.1086/375695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veltman Joris A., Schoenmakers Eric F. P. M., Eussen Bert H., Janssen Irene, Merkx Gerard, van Cleef Brigitte, van Ravenswaaij Conny M., Brunner Han G., Smeets Dominique, van Kessel Ad Geurts. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am J Hum Genet. 2002 Apr 9;70(5):1269–1276. doi: 10.1086/340426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss Jeffrey, Meeks Joshua J., Hurley Lisa, Raverot Gerald, Frassetto Andrea, Jameson J. Larry. Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol. 2003 Nov;23(22):8084–8091. doi: 10.1128/MCB.23.22.8084-8091.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood H. B., Episkopou V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev. 1999 Aug;86(1-2):197–201. doi: 10.1016/s0925-4773(99)00116-1. [DOI] [PubMed] [Google Scholar]
- Yu Wei, Ballif Blake C., Kashork Catherine D., Heilstedt Heidi A., Howard Leslie A., Cai Wei-Wen, White Lisa D., Liu Wenbin, Beaudet Arthur L., Bejjani Bassem A. Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum Mol Genet. 2003 Jul 15;12(17):2145–2152. doi: 10.1093/hmg/ddg230. [DOI] [PubMed] [Google Scholar]
- Zipf W. B., Kelch R. P., Bacon G. E. Variable X-linked recessive hypopituitarism with evidence of gonadotropin deficiency in two pre-pubertal males. Clin Genet. 1977 Apr;11(4):249–254. doi: 10.1111/j.1399-0004.1977.tb01309.x. [DOI] [PubMed] [Google Scholar]