Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Jan;42(1):31–37. doi: 10.1136/jmg.2004.024034

A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas

C De Bustos 1, A Smits 1, B Stromberg 1, V Collins 1, M Nister 1, G Afink 1
PMCID: PMC1735903  PMID: 15635072

Abstract

Background: Platelet derived growth factor receptor α (PDGFRα) expression is typical for a variety of brain tumours, while in normal adult brain PDGFRα expression is limited to a small number of neural progenitor cells. The molecular mechanisms responsible for the PDGFRα expression in tumours are not known, but in the absence of amplification, changes in transcriptional regulation might be an important factor in this process.

Methods and results: We have investigated the link between single nucleotide polymorphisms (SNPs) within the PDGFRα gene promoter and the occurrence of brain tumours (medulloblastomas, supratentorial primitive neuroectodermal tumours (PNETs), ependymal tumours, astrocytomas, oligodendrogliomas, and mixed gliomas). These SNPs give rise to five different promoter haplotypes named H1 and H2α–δ. It is apparent from the haplotype frequency distribution that both PNET (10-fold) and ependymoma (6.5-fold) patient groups display a significant over-representation of the H2δ haplotype. The precise functional role in PDGFRα gene transcription for the H2δ haplotype is not known yet, but we can show that the H2δ haplotype specifically disrupts binding of the transcription factor ZNF148 as compared to the other promoter haplotypes.

Conclusions: The specific over-representation of the H2δ haplotype in both patients with PNETs and ependymomas suggests a functional role for the ZNF148/PDGFRα pathway in the pathogenesis of these tumours.

Full Text

The Full Text of this article is available as a PDF (122.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afink G. B., Nistér M., Stassen B. H., Joosten P. H., Rademakers P. J., Bongcam-Rudloff E., Van Zoelen E. J., Mosselman S. Molecular cloning and functional characterization of the human platelet-derived growth factor alpha receptor gene promoter. Oncogene. 1995 Apr 20;10(8):1667–1672. [PubMed] [Google Scholar]
  2. Afink Gijs, Westermark Ulrica K., Lammerts Ellen, Nistér Monica. C/EBP is an essential component of PDGFRA transcription in MG-63 cells. Biochem Biophys Res Commun. 2004 Mar 5;315(2):313–318. doi: 10.1016/j.bbrc.2004.01.056. [DOI] [PubMed] [Google Scholar]
  3. Andrae J., Hansson I., Afink G. B., Nistér M. Platelet-derived growth factor receptor-alpha in ventricular zone cells and in developing neurons. Mol Cell Neurosci. 2001 Jun;17(6):1001–1013. doi: 10.1006/mcne.2001.0989. [DOI] [PubMed] [Google Scholar]
  4. Andrae Johanna, Molander Catrin, Smits Anja, Funa Keiko, Nistér Monica. Platelet-derived growth factor-B and -C and active alpha-receptors in medulloblastoma cells. Biochem Biophys Res Commun. 2002 Aug 23;296(3):604–611. doi: 10.1016/s0006-291x(02)00917-8. [DOI] [PubMed] [Google Scholar]
  5. Bai L., Merchant J. L. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem. 2000 Sep 29;275(39):30725–30733. doi: 10.1074/jbc.M004249200. [DOI] [PubMed] [Google Scholar]
  6. Betsholtz Christer. Biology of platelet-derived growth factors in development. Birth Defects Res C Embryo Today. 2003 Nov;69(4):272–285. doi: 10.1002/bdrc.10030. [DOI] [PubMed] [Google Scholar]
  7. Black P., Carroll R., Glowacka D. Expression of platelet-derived growth factor transcripts in medulloblastomas and ependymomas. Pediatr Neurosurg. 1996;24(2):74–78. doi: 10.1159/000121020. [DOI] [PubMed] [Google Scholar]
  8. Cheng P. Y., Kagawa N., Takahashi Y., Waterman M. R. Three zinc finger nuclear proteins, Sp1, Sp3, and a ZBP-89 homologue, bind to the cyclic adenosine monophosphate-responsive sequence of the bovine adrenodoxin gene and regulate transcription. Biochemistry. 2000 Apr 18;39(15):4347–4357. doi: 10.1021/bi992298f. [DOI] [PubMed] [Google Scholar]
  9. Dai C., Celestino J. C., Okada Y., Louis D. N., Fuller G. N., Holland E. C. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001 Aug 1;15(15):1913–1925. doi: 10.1101/gad.903001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Di Rocco F., Carroll R. S., Zhang J., Black P. M. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery. 1998 Feb;42(2):341–346. doi: 10.1097/00006123-199802000-00080. [DOI] [PubMed] [Google Scholar]
  11. Erlandsson A., Enarsson M., Forsberg-Nilsson K. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci. 2001 May 15;21(10):3483–3491. doi: 10.1523/JNEUROSCI.21-10-03483.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forsberg-Nilsson K., Behar T. N., Afrakhte M., Barker J. L., McKay R. D. Platelet-derived growth factor induces chemotaxis of neuroepithelial stem cells. J Neurosci Res. 1998 Sep 1;53(5):521–530. doi: 10.1002/(SICI)1097-4547(19980901)53:5<521::AID-JNR2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  13. Fults D., Pedone C. A., Morse H. G., Rose J. W., McKay R. D. Establishment and characterization of a human primitive neuroectodermal tumor cell line from the cerebral hemisphere. J Neuropathol Exp Neurol. 1992 May;51(3):272–280. doi: 10.1097/00005072-199205000-00005. [DOI] [PubMed] [Google Scholar]
  14. Guha A., Dashner K., Black P. M., Wagner J. A., Stiles C. D. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer. 1995 Jan 17;60(2):168–173. doi: 10.1002/ijc.2910600206. [DOI] [PubMed] [Google Scholar]
  15. Hasegawa T., Takeuchi A., Miyaishi O., Isobe K. i., de Crombrugghe B. Cloning and characterization of a transcription factor that binds to the proximal promoters of the two mouse type I collagen genes. J Biol Chem. 1997 Feb 21;272(8):4915–4923. doi: 10.1074/jbc.272.8.4915. [DOI] [PubMed] [Google Scholar]
  16. Heldin C. H., Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999 Oct;79(4):1283–1316. doi: 10.1152/physrev.1999.79.4.1283. [DOI] [PubMed] [Google Scholar]
  17. Hermanson M., Funa K., Hartman M., Claesson-Welsh L., Heldin C. H., Westermark B., Nistér M. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 1992 Jun 1;52(11):3213–3219. [PubMed] [Google Scholar]
  18. Hermanson M., Funa K., Koopmann J., Maintz D., Waha A., Westermark B., Heldin C. H., Wiestler O. D., Louis D. N., von Deimling A. Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res. 1996 Jan 1;56(1):164–171. [PubMed] [Google Scholar]
  19. Herrmann S. M., Ricard S., Nicaud V., Brand E., Behague I., Blanc H., Ruidavets J. B., Evans A., Arveiler D., Luc G. Polymorphisms in the genes encoding platelet-derived growth factor A and alpha receptor. J Mol Med (Berl) 2000;78(5):287–292. doi: 10.1007/s001090000111. [DOI] [PubMed] [Google Scholar]
  20. Ichimura K., Schmidt E. E., Goike H. M., Collins V. P. Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene. 1996 Sep 5;13(5):1065–1072. [PubMed] [Google Scholar]
  21. Jacobsen P. F., Jenkyn D. J., Papadimitriou J. M. Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exp Neurol. 1985 Sep;44(5):472–485. doi: 10.1097/00005072-198509000-00003. [DOI] [PubMed] [Google Scholar]
  22. Joosten P. H., Toepoel M., Mariman E. C., Van Zoelen E. J. Promoter haplotype combinations of the platelet-derived growth factor alpha-receptor gene predispose to human neural tube defects. Nat Genet. 2001 Feb;27(2):215–217. doi: 10.1038/84867. [DOI] [PubMed] [Google Scholar]
  23. Joosten Paul H. L. J., Toepoel Mascha, van Oosterhout Dirk, Afink Gijs B., van Zoelen Everardus J. J. A regulating element essential for PDGFRA transcription is recognized by neural tube defect-associated PRX homeobox transcription factors. Biochim Biophys Acta. 2002 Dec 12;1588(3):254–260. doi: 10.1016/s0925-4439(02)00175-8. [DOI] [PubMed] [Google Scholar]
  24. Keates A. C., Keates S., Kwon J. H., Arseneau K. O., Law D. J., Bai L., Merchant J. L., Wang T. C., Kelly C. P. ZBP-89, Sp1, and nuclear factor-kappa B regulate epithelial neutrophil-activating peptide-78 gene expression in Caco-2 human colonic epithelial cells. J Biol Chem. 2001 Sep 14;276(47):43713–43722. doi: 10.1074/jbc.M107838200. [DOI] [PubMed] [Google Scholar]
  25. Kitami Y., Fukuoka T., Hiwada K., Inagami T. A high level of CCAAT-enhancer binding protein-delta expression is a major determinant for markedly elevated differential gene expression of the platelet-derived growth factor-alpha receptor in vascular smooth muscle cells of genetically hypertensive rats. Circ Res. 1999 Jan 8;84(1):64–73. doi: 10.1161/01.res.84.1.64. [DOI] [PubMed] [Google Scholar]
  26. Kleihues Paul, Louis David N., Scheithauer Bernd W., Rorke Lucy B., Reifenberger Guido, Burger Peter C., Cavenee Webster K. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002 Mar;61(3):215–229. doi: 10.1093/jnen/61.3.215. [DOI] [PubMed] [Google Scholar]
  27. Law D. J., Tarlé S. A., Merchant J. L. The human ZBP-89 homolog, located at chromosome 3q21, represses gastrin gene expression. Mamm Genome. 1998 Feb;9(2):165–167. doi: 10.1007/s003359900711. [DOI] [PubMed] [Google Scholar]
  28. Law G. L., Itoh H., Law D. J., Mize G. J., Merchant J. L., Morris D. R. Transcription factor ZBP-89 regulates the activity of the ornithine decarboxylase promoter. J Biol Chem. 1998 Aug 7;273(32):19955–19964. doi: 10.1074/jbc.273.32.19955. [DOI] [PubMed] [Google Scholar]
  29. Lokker Nathalie A., Sullivan Carol M., Hollenbach Stanley J., Israel Mark A., Giese Neill A. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002 Jul 1;62(13):3729–3735. [PubMed] [Google Scholar]
  30. MacDonald T. J., Brown K. M., LaFleur B., Peterson K., Lawlor C., Chen Y., Packer R. J., Cogen P., Stephan D. A. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet. 2001 Oct;29(2):143–152. doi: 10.1038/ng731. [DOI] [PubMed] [Google Scholar]
  31. Merchant J. L., Iyer G. R., Taylor B. R., Kitchen J. R., Mortensen E. R., Wang Z., Flintoft R. J., Michel J. B., Bassel-Duby R. ZBP-89, a Krüppel-like zinc finger protein, inhibits epidermal growth factor induction of the gastrin promoter. Mol Cell Biol. 1996 Dec;16(12):6644–6653. doi: 10.1128/mcb.16.12.6644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nait Oumesmar B., Vignais L., Baron-Van Evercooren A. Developmental expression of platelet-derived growth factor alpha-receptor in neurons and glial cells of the mouse CNS. J Neurosci. 1997 Jan 1;17(1):125–139. doi: 10.1523/JNEUROSCI.17-01-00125.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nistér M., Claesson-Welsh L., Eriksson A., Heldin C. H., Westermark B. Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J Biol Chem. 1991 Sep 5;266(25):16755–16763. [PubMed] [Google Scholar]
  35. Park Heiyoung, Shelley C. Simon, Arnaout M. Amin. The zinc finger transcription factor ZBP-89 is a repressor of the human beta 2-integrin CD11b gene. Blood. 2002 Sep 19;101(3):894–902. doi: 10.1182/blood-2002-03-0680. [DOI] [PubMed] [Google Scholar]
  36. Park J. K., Williams B. P., Alberta J. A., Stiles C. D. Bipotent cortical progenitor cells process conflicting cues for neurons and glia in a hierarchical manner. J Neurosci. 1999 Dec 1;19(23):10383–10389. doi: 10.1523/JNEUROSCI.19-23-10383.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Passantino R., Antona V., Barbieri G., Rubino P., Melchionna R., Cossu G., Feo S., Giallongo A. Negative regulation of beta enolase gene transcription in embryonic muscle is dependent upon a zinc finger factor that binds to the G-rich box within the muscle-specific enhancer. J Biol Chem. 1998 Jan 2;273(1):484–494. doi: 10.1074/jbc.273.1.484. [DOI] [PubMed] [Google Scholar]
  38. Quandt K., Frech K., Karas H., Wingender E., Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995 Dec 11;23(23):4878–4884. doi: 10.1093/nar/23.23.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reinertsen K. K., Bronson R. T., Stiles C. D., Wang C. Temporal and spatial specificity of PDGF alpha receptor promoter in transgenic mice. Gene Expr. 1997;6(5):301–314. [PMC free article] [PubMed] [Google Scholar]
  40. Reizis B., Leder P. Expression of the mouse pre-T cell receptor alpha gene is controlled by an upstream region containing a transcriptional enhancer. J Exp Med. 1999 May 17;189(10):1669–1678. doi: 10.1084/jem.189.10.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Robinson S., Cohen M., Prayson R., Ransohoff R. M., Tabrizi N., Miller R. H. Constitutive expression of growth-related oncogene and its receptor in oligodendrogliomas. Neurosurgery. 2001 Apr;48(4):864–874. doi: 10.1097/00006123-200104000-00035. [DOI] [PubMed] [Google Scholar]
  42. Smits A., van Grieken D., Hartman M., Lendahl U., Funa K., Nistér M. Coexpression of platelet-derived growth factor alpha and beta receptors on medulloblastomas and other primitive neuroectodermal tumors is consistent with an immature stem cell and neuronal derivation. Lab Invest. 1996 Jan;74(1):188–198. [PubMed] [Google Scholar]
  43. Takeuchi Akihide, Mishina Yuji, Miyaishi Osamu, Kojima Eiji, Hasegawa Tadao, Isobe Ken-ichi. Heterozygosity with respect to Zfp148 causes complete loss of fetal germ cells during mouse embryogenesis. Nat Genet. 2003 Jan 13;33(2):172–176. doi: 10.1038/ng1072. [DOI] [PubMed] [Google Scholar]
  44. Taniuchi T., Mortensen E. R., Ferguson A., Greenson J., Merchant J. L. Overexpression of ZBP-89, a zinc finger DNA binding protein, in gastric cancer. Biochem Biophys Res Commun. 1997 Apr 7;233(1):154–160. doi: 10.1006/bbrc.1997.6310. [DOI] [PubMed] [Google Scholar]
  45. Uhrbom L., Hesselager G., Nistér M., Westermark B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 1998 Dec 1;58(23):5275–5279. [PubMed] [Google Scholar]
  46. Wang C., Song B. Cell-type-specific expression of the platelet-derived growth factor alpha receptor: a role for GATA-binding protein. Mol Cell Biol. 1996 Feb;16(2):712–723. doi: 10.1128/mcb.16.2.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wieczorek E., Lin Z., Perkins E. B., Law D. J., Merchant J. L., Zehner Z. E. The zinc finger repressor, ZBP-89, binds to the silencer element of the human vimentin gene and complexes with the transcriptional activator, Sp1. J Biol Chem. 2000 Apr 28;275(17):12879–12888. doi: 10.1074/jbc.275.17.12879. [DOI] [PubMed] [Google Scholar]
  48. Yamada A., Takaki S., Hayashi F., Georgopoulos K., Perlmutter R. M., Takatsu K. Identification and characterization of a transcriptional regulator for the lck proximal promoter. J Biol Chem. 2001 Mar 13;276(21):18082–18089. doi: 10.1074/jbc.M008387200. [DOI] [PubMed] [Google Scholar]
  49. Ye S., Whatling C., Watkins H., Henney A. Human stromelysin gene promoter activity is modulated by transcription factor ZBP-89. FEBS Lett. 1999 May 7;450(3):268–272. doi: 10.1016/s0014-5793(99)00509-8. [DOI] [PubMed] [Google Scholar]
  50. Zhang X. Q., Afink G. B., Svensson K., Jacobs J. J., Günther T., Forsberg-Nilsson K., van Zoelen E. J., Westermark B., Nistér M. Specific expression in mouse mesoderm- and neural crest-derived tissues of a human PDGFRA promoter/lacZ transgene. Mech Dev. 1998 Jan;70(1-2):167–180. doi: 10.1016/s0925-4773(97)00190-1. [DOI] [PubMed] [Google Scholar]
  51. Zhu Huiping, Wicker Ned J., Volcik Kelly, Zhang Jing, Shaw Gary M., Lammer Edward J., Suarez Lucina, Canfield Mark, Finnell Richard H. Promoter haplotype combinations for the human PDGFRA gene are associated with risk of neural tube defects. Mol Genet Metab. 2004 Feb;81(2):127–132. doi: 10.1016/j.ymgme.2003.11.003. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES