Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Jan;42(1):38–44. doi: 10.1136/jmg.2004.023556

Biochemical analysis of cultured chorionic villi for the prenatal diagnosis of peroxisomal disorders: biochemical thresholds and molecular sensitivity for maternal cell contamination detection

S Steinberg 1, S Katsanis 1, A Moser 1, G Cutting 1
PMCID: PMC1735906  PMID: 15635073

Abstract

Objectives: The prenatal diagnosis of peroxisomal disorders is most often performed by biochemical analysis of cultured chorionic villus sample (CVS) or amniocytes. We aimed to (a) highlight the risk of maternal cell contamination (MCC) in biochemical prenatal diagnosis, (b) establish the threshold of these biochemical assays to MCC, and (c) document the sensitivity of PCR based genotyping of microsatellites for the detection of MCC in prenatal diagnosis of inborn errors by biochemical analysis.

Methods: The threshold of each biochemical assay was assessed by co-cultivating fibroblasts from known affected and normal individuals. Genotypes for three polymorphic loci were determined by PCR and GeneScan analysis. The sensitivity of the molecular test was determined by DNA mixing experiments and isolation of DNA from co-cultivated fibroblasts.

Results: MCC was detected in 2.5% of at risk CVS cultures (n = 79). Co-cultivation of defective and normal fibroblasts demonstrated that the peroxisomal biochemical assays were accurate at 25% contamination. Very low level DNA or cell contamination (1–5%) was detectable by genotyping, but an allele did not yield a definitive peak based on morphology until ∼10% contamination. Furthermore, we demonstrated that other inborn errors of metabolism might be more susceptible to diagnostic error by low level MCC.

Conclusion: The sensitivity of the microsatellite analysis (⩾10%) is well within the threshold of peroxisomal biochemical assays. Although peroxisomal biochemical assays would not be predicted to introduce a false positive or negative result if MCC <10% were present but not recognised by molecular analysis, the same may not be true for other inborn errors of metabolism.

Full Text

The Full Text of this article is available as a PDF (121.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniadi T., Yapijakis C., Kaminopetros P., Makatsoris C., Velissariou V., Vassilopoulos D., Petersen M. B. A simple and effective approach for detecting maternal cell contamination in molecular prenatal diagnosis. Prenat Diagn. 2002 May;22(5):425–429. doi: 10.1002/pd.325. [DOI] [PubMed] [Google Scholar]
  2. Brookhyser K. M., Lipson M. H., Moser A. B., Moser H. W., Lachman R. S., Rimoin D. L. Prenatal diagnosis of rhizomelic chondrodysplasia punctata due to isolated alkyldihydroacetonephosphate acyltransferase synthase deficiency. Prenat Diagn. 1999 Apr;19(4):383–385. doi: 10.1002/(sici)1097-0223(199904)19:4<383::aid-pd544>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  3. Corzo Deyanira, Gibson William, Johnson Kisha, Mitchell Grant, LePage Guy, Cox Gerald F., Casey Robin, Zeiss Carolyn, Tyson Heidi, Cutting Garry R. Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: a novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet. 2002 Apr 29;70(6):1520–1531. doi: 10.1086/340849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Desnick R. J., Schuette J. L., Golbus M. S., Jackson L., Lubs H. A., Ledbetter D. H., Mahoney M. J., Pergament E., Simpson J. L., Zachary J. M. First-trimester biochemical and molecular diagnoses using chorionic villi: high accuracy in the U.S. collaborative study. Prenat Diagn. 1992 May;12(5):357–372. doi: 10.1002/pd.1970120505. [DOI] [PubMed] [Google Scholar]
  5. Fensom A. H., Benson P. F., Baker J. E., Mutton D. E. Prenatal diagnosis of argininosuccinic aciduria: effect of mycoplasma contamination on the indirect assay for argininosuccinate lyase. Am J Hum Genet. 1980 Sep;32(5):761–763. [PMC free article] [PubMed] [Google Scholar]
  6. Harzer K., Schuster I. Prenatal enzymatic diagnosis of Krabbe disease (globoid-cell leukodystrophy) using chorionic villi. Pitfalls in the use of uncultured villi. Hum Genet. 1989 Dec;84(1):83–85. doi: 10.1007/BF00210679. [DOI] [PubMed] [Google Scholar]
  7. Kaback M. M. Population-based genetic screening for reproductive counseling: the Tay-Sachs disease model. Eur J Pediatr. 2000 Dec;159 (Suppl 3):S192–S195. doi: 10.1007/pl00014401. [DOI] [PubMed] [Google Scholar]
  8. Kihara H., Ho C. K., Fluharty A. L., Tsay K. K., Hartlage P. L. Prenatal diagnosis of metachromatic leukodystrophy in a family with pseudo arylsulfatase A deficiency by the cerebroside sulfate loading test. Pediatr Res. 1980 Mar;14(3):224–227. doi: 10.1203/00006450-198003000-00009. [DOI] [PubMed] [Google Scholar]
  9. Moser A. B., Kreiter N., Bezman L., Lu S., Raymond G. V., Naidu S., Moser H. W. Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann Neurol. 1999 Jan;45(1):100–110. doi: 10.1002/1531-8249(199901)45:1<100::aid-art16>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  10. Moser A. B., Moser H. W. The prenatal diagnosis of X-linked adrenoleukodystrophy. Prenat Diagn. 1999 Jan;19(1):46–48. doi: 10.1002/(sici)1097-0223(199901)19:1<46::aid-pd501>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  11. Moser A. B., Rasmussen M., Naidu S., Watkins P. A., McGuinness M., Hajra A. K., Chen G., Raymond G., Liu A., Gordon D. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr. 1995 Jul;127(1):13–22. doi: 10.1016/s0022-3476(95)70250-4. [DOI] [PubMed] [Google Scholar]
  12. Mossman J., Patrick A. D., Fensom A. H., Tansley L. R., Benson P. F., Der Kaloustian V. M., Dudin G. Correct prenatal diagnosis of a Hurler fetus where amniotic fluid cell cultures were of maternal origin. Prenat Diagn. 1981 Apr;1(2):121–124. doi: 10.1002/pd.1970010206. [DOI] [PubMed] [Google Scholar]
  13. Roscher A., Molzer B., Bernheimer H., Stöckler S., Mutz I., Paltauf F. The cerebrohepatorenal (Zellweger) syndrome: an improved method for the biochemical diagnosis and its potential value for prenatal detection. Pediatr Res. 1985 Sep;19(9):930–933. doi: 10.1203/00006450-198509000-00013. [DOI] [PubMed] [Google Scholar]
  14. Steinberg S. J., Elçioglu N., Slade C. M., Sankaralingam A., Dennis N., Mohammed S. N., Fensom A. H. Peroxisomal disorders: clinical and biochemical studies in 15 children and prenatal diagnosis in 7 families. Am J Med Genet. 1999 Aug 27;85(5):502–510. [PubMed] [Google Scholar]
  15. Stellaard F., Kleijer W. J., Wanders R. J., Schutgens R. B., Jakobs C. Bile acids in amniotic fluid: promising metabolites for the prenatal diagnosis of peroxisomal disorders. J Inherit Metab Dis. 1991;14(3):353–356. doi: 10.1007/BF01811701. [DOI] [PubMed] [Google Scholar]
  16. Urquhart A., Oldroyd N. J., Kimpton C. P., Gill P. Highly discriminating heptaplex short tandem repeat PCR system for forensic identification. Biotechniques. 1995 Jan;18(1):116-8, 120-1. [PubMed] [Google Scholar]
  17. Wiederschain G., Raghavan S., Kolodny E. Characterization of 6-hexadecanoylamino-4-methylumbelliferyl-beta-D- galactopyranoside as fluorogenic substrate of galactocerebrosidase for the diagnosis of Krabbe disease. Clin Chim Acta. 1992 Jan 31;205(1-2):87–96. doi: 10.1016/s0009-8981(05)80003-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES