Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Oct;42(10):737–748. doi: 10.1136/jmg.2004.029538

Splicing in action: assessing disease causing sequence changes

D Baralle 1, M Baralle 1
PMCID: PMC1735933  PMID: 16199547

Abstract

Variations in new splicing regulatory elements are difficult to identify exclusively by sequence inspection and may result in deleterious effects on precursor (pre) mRNA splicing. These mutations can result in either complete skipping of the exon, retention of the intron, or the introduction of a new splice site within an exon or intron. Sometimes mutations that do not disrupt or create a splice site activate pre-existing pseudo splice sites, consistent with the proposal that introns contain splicing inhibitory sequences. These variants can also affect the fine balance of isoforms produced by alternatively spliced exons and in consequence cause disease. Available genomic pathology data reveal that we are still partly ignorant of the basic mechanisms that underlie the pre-mRNA splicing process. The fact that human pathology can provide pointers to new modulatory elements of splicing should be exploited.

Full Text

The Full Text of this article is available as a PDF (308.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi M., Hornig H., Weissmann C. 5' cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5' splice region, not by the conserved 5' GU. Cell. 1987 Jul 17;50(2):237–246. doi: 10.1016/0092-8674(87)90219-4. [DOI] [PubMed] [Google Scholar]
  2. Ars E., Kruyer H., Gaona A., Serra E., Lázaro C., Estivill X. Prenatal diagnosis of sporadic neurofibromatosis type 1 (NF1) by RNA and DNA analysis of a splicing mutation. Prenat Diagn. 1999 Aug;19(8):739–742. [PubMed] [Google Scholar]
  3. Baralle M., Baralle D., De Conti L., Mattocks C., Whittaker J., Knezevich A., Ffrench-Constant C., Baralle F. E. Identification of a mutation that perturbs NF1 agene splicing using genomic DNA samples and a minigene assay. J Med Genet. 2003 Mar;40(3):220–222. doi: 10.1136/jmg.40.3.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black Douglas L. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003 Feb 27;72:291–336. doi: 10.1146/annurev.biochem.72.121801.161720. [DOI] [PubMed] [Google Scholar]
  5. Blanchette M., Chabot B. A highly stable duplex structure sequesters the 5' splice site region of hnRNP A1 alternative exon 7B. RNA. 1997 Apr;3(4):405–419. [PMC free article] [PubMed] [Google Scholar]
  6. Blencowe B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci. 2000 Mar;25(3):106–110. doi: 10.1016/s0968-0004(00)01549-8. [DOI] [PubMed] [Google Scholar]
  7. Buratti Emanuele, Baralle Francisco E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol. 2004 Dec;24(24):10505–10514. doi: 10.1128/MCB.24.24.10505-10514.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buratti Emanuele, Baralle Marco, De Conti Laura, Baralle Diana, Romano Maurizio, Ayala Youhna M., Baralle Francisco E. hnRNP H binding at the 5' splice site correlates with the pathological effect of two intronic mutations in the NF-1 and TSHbeta genes. Nucleic Acids Res. 2004 Aug 6;32(14):4224–4236. doi: 10.1093/nar/gkh752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buratti Emanuele, Brindisi Antonia, Pagani Franco, Baralle Francisco E. Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am J Hum Genet. 2004 Jun;74(6):1322–1325. doi: 10.1086/420978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buratti Emanuele, Muro Andrés F., Giombi Maurizio, Gherbassi Daniel, Iaconcig Alessandra, Baralle Francisco E. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol. 2004 Feb;24(3):1387–1400. doi: 10.1128/MCB.24.3.1387-1400.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Burrows N. P., Nicholls A. C., Richards A. J., Luccarini C., Harrison J. B., Yates J. R., Pope F. M. A point mutation in an intronic branch site results in aberrant splicing of COL5A1 and in Ehlers-Danlos syndrome type II in two British families. Am J Hum Genet. 1998 Aug;63(2):390–398. doi: 10.1086/301948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cartegni Luca, Chew Shern L., Krainer Adrian R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002 Apr;3(4):285–298. doi: 10.1038/nrg775. [DOI] [PubMed] [Google Scholar]
  13. Cartegni Luca, Krainer Adrian R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet. 2002 Mar 4;30(4):377–384. doi: 10.1038/ng854. [DOI] [PubMed] [Google Scholar]
  14. Cartegni Luca, Wang Jinhua, Zhu Zhengwei, Zhang Michael Q., Krainer Adrian R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003 Jul 1;31(13):3568–3571. doi: 10.1093/nar/gkg616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Colapietro Patrizia, Gervasini Cristina, Natacci Federica, Rossi Livia, Riva Paola, Larizza Lidia. NF1 exon 7 skipping and sequence alterations in exonic splice enhancers (ESEs) in a neurofibromatosis 1 patient. Hum Genet. 2003 Sep 6;113(6):551–554. doi: 10.1007/s00439-003-1009-2. [DOI] [PubMed] [Google Scholar]
  16. Coulter L. R., Landree M. A., Cooper T. A. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol. 1997 Apr;17(4):2143–2150. doi: 10.1128/mcb.17.4.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cramer P., Cáceres J. F., Cazalla D., Kadener S., Muro A. F., Baralle F. E., Kornblihtt A. R. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell. 1999 Aug;4(2):251–258. doi: 10.1016/s1097-2765(00)80372-x. [DOI] [PubMed] [Google Scholar]
  18. Crispino J. D., Mermoud J. E., Lamond A. I., Sharp P. A. Cis-acting elements distinct from the 5' splice site promote U1-independent pre-mRNA splicing. RNA. 1996 Jul;2(7):664–673. [PMC free article] [PubMed] [Google Scholar]
  19. Cáceres Javier F., Kornblihtt Alberto R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 2002 Apr;18(4):186–193. doi: 10.1016/s0168-9525(01)02626-9. [DOI] [PubMed] [Google Scholar]
  20. Denecke Jonas, Kranz Christian, Kemming Dirk, Koch Hans-Georg, Marquardt Thorsten. An activated 5' cryptic splice site in the human ALG3 gene generates a premature termination codon insensitive to nonsense-mediated mRNA decay in a new case of congenital disorder of glycosylation type Id (CDG-Id). Hum Mutat. 2004 May;23(5):477–486. doi: 10.1002/humu.20026. [DOI] [PubMed] [Google Scholar]
  21. Deshler J. O., Rossi J. J. Unexpected point mutations activate cryptic 3' splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev. 1991 Jul;5(7):1252–1263. doi: 10.1101/gad.5.7.1252. [DOI] [PubMed] [Google Scholar]
  22. Du Hansen, Rosbash Michael. The U1 snRNP protein U1C recognizes the 5' splice site in the absence of base pairing. Nature. 2002 Sep 5;419(6902):86–90. doi: 10.1038/nature00947. [DOI] [PubMed] [Google Scholar]
  23. Estes P. A., Cooke N. E., Liebhaber S. A. A native RNA secondary structure controls alternative splice-site selection and generates two human growth hormone isoforms. J Biol Chem. 1992 Jul 25;267(21):14902–14908. [PubMed] [Google Scholar]
  24. Fairbrother W. G., Chasin L. A. Human genomic sequences that inhibit splicing. Mol Cell Biol. 2000 Sep;20(18):6816–6825. doi: 10.1128/mcb.20.18.6816-6825.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fairbrother William G., Yeh Ru-Fang, Sharp Phillip A., Burge Christopher B. Predictive identification of exonic splicing enhancers in human genes. Science. 2002 Jul 11;297(5583):1007–1013. doi: 10.1126/science.1073774. [DOI] [PubMed] [Google Scholar]
  26. Fairbrother William G., Yeo Gene W., Yeh Rufang, Goldstein Paul, Mawson Matthew, Sharp Phillip A., Burge Christopher B. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res. 2004 Jul 1;32(WEB):W187–W190. doi: 10.1093/nar/gkh393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Faustino Nuno André, Cooper Thomas A. Pre-mRNA splicing and human disease. Genes Dev. 2003 Feb 15;17(4):419–437. doi: 10.1101/gad.1048803. [DOI] [PubMed] [Google Scholar]
  28. Gabellini N. A polymorphic GT repeat from the human cardiac Na+Ca2+ exchanger intron 2 activates splicing. Eur J Biochem. 2001 Feb;268(4):1076–1083. doi: 10.1046/j.1432-1327.2001.01974.x. [DOI] [PubMed] [Google Scholar]
  29. Garcia-Blanco Mariano A., Baraniak Andrew P., Lasda Erika L. Alternative splicing in disease and therapy. Nat Biotechnol. 2004 May;22(5):535–546. doi: 10.1038/nbt964. [DOI] [PubMed] [Google Scholar]
  30. Gorlov Ivan P., Gorlova Olga Y., Frazier Marsha L., Amos Christopher I. Missense mutations in hMLH1 and hMSH2 are associated with exonic splicing enhancers. Am J Hum Genet. 2003 Oct 1;73(5):1157–1161. doi: 10.1086/378819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Graveley B. R. Sorting out the complexity of SR protein functions. RNA. 2000 Sep;6(9):1197–1211. doi: 10.1017/s1355838200000960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Grover A., Houlden H., Baker M., Adamson J., Lewis J., Prihar G., Pickering-Brown S., Duff K., Hutton M. 5' splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem. 1999 May 21;274(21):15134–15143. doi: 10.1074/jbc.274.21.15134. [DOI] [PubMed] [Google Scholar]
  33. Hastings M. L., Krainer A. R. Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol. 2001 Jun;13(3):302–309. doi: 10.1016/s0955-0674(00)00212-x. [DOI] [PubMed] [Google Scholar]
  34. Hefferon Timothy W., Groman Joshua D., Yurk Catherine E., Cutting Garry R. A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci U S A. 2004 Mar 1;101(10):3504–3509. doi: 10.1073/pnas.0400182101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hirose Y., Manley J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 2000 Jun 15;14(12):1415–1429. [PubMed] [Google Scholar]
  36. Hoffmeyer S., Nürnberg P., Ritter H., Fahsold R., Leistner W., Kaufmann D., Krone W. Nearby stop codons in exons of the neurofibromatosis type 1 gene are disparate splice effectors. Am J Hum Genet. 1998 Feb;62(2):269–277. doi: 10.1086/301715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Holbrook Jill A., Neu-Yilik Gabriele, Hentze Matthias W., Kulozik Andreas E. Nonsense-mediated decay approaches the clinic. Nat Genet. 2004 Aug;36(8):801–808. doi: 10.1038/ng1403. [DOI] [PubMed] [Google Scholar]
  38. Hönig Arnd, Auboeuf Didier, Parker Marjorie M., O'Malley Bert W., Berget Susan M. Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol Cell Biol. 2002 Aug;22(16):5698–5707. doi: 10.1128/MCB.22.16.5698-5707.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Jiang Z., Cote J., Kwon J. M., Goate A. M., Wu J. Y. Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17. Mol Cell Biol. 2000 Jun;20(11):4036–4048. doi: 10.1128/mcb.20.11.4036-4048.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kashima Tsuyoshi, Manley James L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet. 2003 Aug;34(4):460–463. doi: 10.1038/ng1207. [DOI] [PubMed] [Google Scholar]
  41. Kashima Tsuyoshi, Manley James L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet. 2003 Aug;34(4):460–463. doi: 10.1038/ng1207. [DOI] [PubMed] [Google Scholar]
  42. Kaufmann Dieter, Leistner Werner, Kruse Petra, Kenner Oliver, Hoffmeyer Sven, Hein Christian, Vogel Walther, Messiaen Ludwine, Bartelt Britta. Aberrant splicing in several human tumors in the tumor suppressor genes neurofibromatosis type 1, neurofibromatosis type 2, and tuberous sclerosis 2. Cancer Res. 2002 Mar 1;62(5):1503–1509. [PubMed] [Google Scholar]
  43. Knudsen B., Hein J. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics. 1999 Jun;15(6):446–454. doi: 10.1093/bioinformatics/15.6.446. [DOI] [PubMed] [Google Scholar]
  44. Knudsen Bjarne, Hein Jotun. Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 2003 Jul 1;31(13):3423–3428. doi: 10.1093/nar/gkg614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kornblihtt Alberto R., de la Mata Manuel, Fededa Juan Pablo, Munoz Manuel J., Nogues Guadalupe. Multiple links between transcription and splicing. RNA. 2004 Oct;10(10):1489–1498. doi: 10.1261/rna.7100104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  47. Krecic A. M., Swanson M. S. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999 Jun;11(3):363–371. doi: 10.1016/S0955-0674(99)80051-9. [DOI] [PubMed] [Google Scholar]
  48. Lam Bianca J., Hertel Klemens J. A general role for splicing enhancers in exon definition. RNA. 2002 Oct;8(10):1233–1241. doi: 10.1017/s1355838202028030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lamond A. I. The spliceosome. Bioessays. 1993 Sep;15(9):595–603. doi: 10.1002/bies.950150905. [DOI] [PubMed] [Google Scholar]
  50. Liu H. X., Cartegni L., Zhang M. Q., Krainer A. R. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet. 2001 Jan;27(1):55–58. doi: 10.1038/83762. [DOI] [PubMed] [Google Scholar]
  51. Liu H. X., Zhang M., Krainer A. R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998 Jul 1;12(13):1998–2012. doi: 10.1101/gad.12.13.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Madhani H. D., Guthrie C. Dynamic RNA-RNA interactions in the spliceosome. Annu Rev Genet. 1994;28:1–26. doi: 10.1146/annurev.ge.28.120194.000245. [DOI] [PubMed] [Google Scholar]
  53. Maniatis Tom, Tasic Bosiljka. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature. 2002 Jul 11;418(6894):236–243. doi: 10.1038/418236a. [DOI] [PubMed] [Google Scholar]
  54. Manley J. L., Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. doi: 10.1101/gad.10.13.1569. [DOI] [PubMed] [Google Scholar]
  55. Maquat L. E. The power of point mutations. Nat Genet. 2001 Jan;27(1):5–6. doi: 10.1038/83759. [DOI] [PubMed] [Google Scholar]
  56. Maquat Lynne E. NASty effects on fibrillin pre-mRNA splicing: another case of ESE does it, but proposals for translation-dependent splice site choice live on. Genes Dev. 2002 Jul 15;16(14):1743–1753. doi: 10.1101/gad.1014502. [DOI] [PubMed] [Google Scholar]
  57. Mardon H. J., Sebastio G., Baralle F. E. A role for exon sequences in alternative splicing of the human fibronectin gene. Nucleic Acids Res. 1987 Oct 12;15(19):7725–7733. doi: 10.1093/nar/15.19.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Matsuo M., Nishio H., Kitoh Y., Francke U., Nakamura H. Partial deletion of a dystrophin gene leads to exon skipping and to loss of an intra-exon hairpin structure from the predicted mRNA precursor. Biochem Biophys Res Commun. 1992 Jan 31;182(2):495–500. doi: 10.1016/0006-291x(92)91759-j. [DOI] [PubMed] [Google Scholar]
  59. Messiaen L., Callens T., De Paepe A., Craen M., Mortier G. Characterisation of two different nonsense mutations, C6792A and C6792G, causing skipping of exon 37 in the NF1 gene. Hum Genet. 1997 Nov;101(1):75–80. doi: 10.1007/s004390050590. [DOI] [PubMed] [Google Scholar]
  60. Moore Melissa J. RNA events. No end to nonsense. Science. 2002 Oct 11;298(5592):370–371. doi: 10.1126/science.1078096. [DOI] [PubMed] [Google Scholar]
  61. Muro A. F., Caputi M., Pariyarath R., Pagani F., Buratti E., Baralle F. E. Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol Cell Biol. 1999 Apr;19(4):2657–2671. doi: 10.1128/mcb.19.4.2657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Nilsen T. W. RNA-RNA interactions in the spliceosome: unraveling the ties that bind. Cell. 1994 Jul 15;78(1):1–4. doi: 10.1016/0092-8674(94)90563-0. [DOI] [PubMed] [Google Scholar]
  63. Pagani F., Buratti E., Stuani C., Romano M., Zuccato E., Niksic M., Giglio L., Faraguna D., Baralle F. E. Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J Biol Chem. 2000 Jul 14;275(28):21041–21047. doi: 10.1074/jbc.M910165199. [DOI] [PubMed] [Google Scholar]
  64. Pagani Franco, Baralle Francisco E. Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet. 2004 May;5(5):389–396. doi: 10.1038/nrg1327. [DOI] [PubMed] [Google Scholar]
  65. Pagani Franco, Buratti Emanuele, Stuani Cristiana, Baralle Francisco E. Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem. 2003 May 5;278(29):26580–26588. doi: 10.1074/jbc.M212813200. [DOI] [PubMed] [Google Scholar]
  66. Pagani Franco, Buratti Emanuele, Stuani Cristiana, Bendix Regina, Dörk Thilo, Baralle Francisco E. A new type of mutation causes a splicing defect in ATM. Nat Genet. 2002 Mar 11;30(4):426–429. doi: 10.1038/ng858. [DOI] [PubMed] [Google Scholar]
  67. Pagani Franco, Stuani Cristiana, Tzetis Maria, Kanavakis Emmanuel, Efthymiadou Alexandra, Doudounakis Stavros, Casals Teresa, Baralle Francisco E. New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet. 2003 May 15;12(10):1111–1120. doi: 10.1093/hmg/ddg131. [DOI] [PubMed] [Google Scholar]
  68. Pagani Franco, Stuani Cristiana, Zuccato Elisabetta, Kornblihtt Alberto R., Baralle Francisco E. Promoter architecture modulates CFTR exon 9 skipping. J Biol Chem. 2002 Nov 5;278(3):1511–1517. doi: 10.1074/jbc.M209676200. [DOI] [PubMed] [Google Scholar]
  69. Proudfoot Nick J., Furger Andre, Dye Michael J. Integrating mRNA processing with transcription. Cell. 2002 Feb 22;108(4):501–512. doi: 10.1016/s0092-8674(02)00617-7. [DOI] [PubMed] [Google Scholar]
  70. Reed R. Mechanisms of fidelity in pre-mRNA splicing. Curr Opin Cell Biol. 2000 Jun;12(3):340–345. doi: 10.1016/s0955-0674(00)00097-1. [DOI] [PubMed] [Google Scholar]
  71. Romano M., Danek G. M., Baralle F. E., Mazzotti R., Filocamo M. Functional characterization of the novel mutation IVS 8 (-11delC) (-14T>A) in the intron 8 of the glucocerebrosidase gene of two Italian siblings with Gaucher disease type I. Blood Cells Mol Dis. 2000 Jun;26(3):171–176. doi: 10.1006/bcmd.2000.0293. [DOI] [PubMed] [Google Scholar]
  72. Schwarze U., Goldstein J. A., Byers P. H. Splicing defects in the COL3A1 gene: marked preference for 5' (donor) spice-site mutations in patients with exon-skipping mutations and Ehlers-Danlos syndrome type IV. Am J Hum Genet. 1997 Dec;61(6):1276–1286. doi: 10.1086/301641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Shen L. X., Basilion J. P., Stanton V. P., Jr Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7871–7876. doi: 10.1073/pnas.96.14.7871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Smith C. W., Valcárcel J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci. 2000 Aug;25(8):381–388. doi: 10.1016/s0968-0004(00)01604-2. [DOI] [PubMed] [Google Scholar]
  76. Stickeler E., Fraser S. D., Honig A., Chen A. L., Berget S. M., Cooper T. A. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J. 2001 Jul 16;20(14):3821–3830. doi: 10.1093/emboj/20.14.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sun H., Chasin L. A. Multiple splicing defects in an intronic false exon. Mol Cell Biol. 2000 Sep;20(17):6414–6425. doi: 10.1128/mcb.20.17.6414-6425.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Tacke R., Manley J. L. Determinants of SR protein specificity. Curr Opin Cell Biol. 1999 Jun;11(3):358–362. doi: 10.1016/S0955-0674(99)80050-7. [DOI] [PubMed] [Google Scholar]
  79. Teraoka S. N., Telatar M., Becker-Catania S., Liang T., Onengüt S., Tolun A., Chessa L., Sanal O., Bernatowska E., Gatti R. A. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet. 1999 Jun;64(6):1617–1631. doi: 10.1086/302418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Tu M., Tong W., Perkins R., Valentine C. R. Predicted changes in pre-mRNA secondary structure vary in their association with exon skipping for mutations in exons 2, 4, and 8 of the Hprt gene and exon 51 of the fibrillin gene. Mutat Res. 2000 Feb;432(1-2):15–32. doi: 10.1016/s1383-5726(99)00011-4. [DOI] [PubMed] [Google Scholar]
  81. Tuffery-Giraud Sylvie, Saquet Céline, Chambert Sylvie, Claustres Mireille. Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy. Hum Mutat. 2003 Jun;21(6):608–614. doi: 10.1002/humu.10214. [DOI] [PubMed] [Google Scholar]
  82. Vandenbroucke Ina, Callens Tom, De Paepe Anne, Messiaen Ludwine. Complex splicing pattern generates great diversity in human NF1 transcripts. BMC Genomics. 2002 May 24;3:13–13. doi: 10.1186/1471-2164-3-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Varani L., Hasegawa M., Spillantini M. G., Smith M. J., Murrell J. R., Ghetti B., Klug A., Goedert M., Varani G. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8229–8234. doi: 10.1073/pnas.96.14.8229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Vibe-Pedersen K., Kornblihtt A. R., Baralle F. E. Expression of a human alpha-globin/fibronectin gene hybrid generates two mRNAs by alternative splicing. EMBO J. 1984 Nov;3(11):2511–2516. doi: 10.1002/j.1460-2075.1984.tb02165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Yang Yongping, Swaminathan Srividya, Martin Betty K., Sharan Shyam K. Aberrant splicing induced by missense mutations in BRCA1: clues from a humanized mouse model. Hum Mol Genet. 2003 Jul 8;12(17):2121–2131. doi: 10.1093/hmg/ddg222. [DOI] [PubMed] [Google Scholar]
  86. Yasuda M., Takamatsu J., D'Souza I., Crowther R. A., Kawamata T., Hasegawa M., Hasegawa H., Spillantini M. G., Tanimukai S., Poorkaj P. A novel mutation at position +12 in the intron following exon 10 of the tau gene in familial frontotemporal dementia (FTD-Kumamoto) Ann Neurol. 2000 Apr;47(4):422–429. [PubMed] [Google Scholar]
  87. Zhang Li, Vincent G. Michael, Baralle Marco, Baralle Francisco E., Anson Blake D., Benson D. Woodrow, Whiting Bryant, Timothy Katherine W., Carlquist John, January Craig T. An intronic mutation causes long QT syndrome. J Am Coll Cardiol. 2004 Sep 15;44(6):1283–1291. doi: 10.1016/j.jacc.2004.06.045. [DOI] [PubMed] [Google Scholar]
  88. Zhang M. Q. Statistical features of human exons and their flanking regions. Hum Mol Genet. 1998 May;7(5):919–932. doi: 10.1093/hmg/7.5.919. [DOI] [PubMed] [Google Scholar]
  89. Zuker Michael. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003 Jul 1;31(13):3406–3415. doi: 10.1093/nar/gkg595. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES