Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2005 Apr 12;42(12):932–939. doi: 10.1136/jmg.2005.031278

A male-specific quantitative trait locus on 1p21 controlling human stature

S Sammalisto 1, T Hiekkalinna 1, E Suviolahti 1, K Sood 1, A Metzidis 1, P Pajukanta 1, H Lilja 1, A Soro-Paavonen 1, M Taskinen 1, T Tuomi 1, P Almgren 1, M Orho-Melander 1, L Groop 1, L Peltonen 1, M Perola 1
PMCID: PMC1735962  PMID: 15827092

Abstract

Background: Many genome-wide scans aimed at complex traits have been statistically underpowered due to small sample size. Combining data from several genome-wide screens with comparable quantitative phenotype data should improve statistical power for the localisation of genomic regions contributing to these traits.

Objective: To perform a genome-wide screen for loci affecting adult stature by combined analysis of four previously performed genome-wide scans.

Methods: We developed a web based computer tool, Cartographer, for combining genetic marker maps which positions genetic markers accurately using the July 2003 release of the human genome sequence and the deCODE genetic map. Using Cartographer, we combined the primary genotype data from four genome-wide scans and performed variance components (VC) linkage analyses for human stature on the pooled dataset of 1417 individuals from 277 families and performed VC analyses for males and females separately.

Results: We found significant linkage to stature on 1p21 (multipoint LOD score 4.25) and suggestive linkages on 9p24 and 18q21 (multipoint LOD scores 2.57 and 2.39, respectively) in males-only analyses. We also found suggestive linkage to 4q35 and 22q13 (multipoint LOD scores 2.18 and 2.85, respectively) when we analysed both females and males and to 13q12 (multipoint LOD score 2.66) in females-only analyses.

Conclusions: We strengthened the evidence for linkage to previously reported quantitative trait loci (QTL) for stature and also found significant evidence of a novel male-specific QTL on 1p21. Further investigation of several interesting candidate genes in this region will help towards characterisation of this first sex-specific locus affecting human stature.

Full Text

The Full Text of this article is available as a PDF (121.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abecasis G. R., Cherny S. S., Cookson W. O., Cardon L. R. GRR: graphical representation of relationship errors. Bioinformatics. 2001 Aug;17(8):742–743. doi: 10.1093/bioinformatics/17.8.742. [DOI] [PubMed] [Google Scholar]
  2. Abecasis Gonçalo R., Cherny Stacey S., Cookson William O., Cardon Lon R. Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2001 Dec 3;30(1):97–101. doi: 10.1038/ng786. [DOI] [PubMed] [Google Scholar]
  3. Ahn J., Lüdecke H. J., Lindow S., Horton W. A., Lee B., Wagner M. J., Horsthemke B., Wells D. E. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nat Genet. 1995 Oct;11(2):137–143. doi: 10.1038/ng1095-137. [DOI] [PubMed] [Google Scholar]
  4. Allison D. B., Heo M. Meta-analysis of linkage data under worst-case conditions: a demonstration using the human OB region. Genetics. 1998 Feb;148(2):859–865. doi: 10.1093/genetics/148.2.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Altmüller J., Palmer L. J., Fischer G., Scherb H., Wjst M. Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet. 2001 Sep 14;69(5):936–950. doi: 10.1086/324069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beck Stephanie R., Brown W. Mark, Williams Adrienne H., Pierce June, Rich Stephen S., Langefeld Carl D. Age-stratified QTL genome scan analyses for anthropometric measures. BMC Genet. 2003 Dec 31;4 (Suppl 1):S31–S31. doi: 10.1186/1471-2156-4-S1-S31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benz Karin, Breit Stephen, Lukoschek Martin, Mau Hans, Richter Wiltrud. Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun. 2002 Apr 26;293(1):284–292. doi: 10.1016/S0006-291X(02)00223-1. [DOI] [PubMed] [Google Scholar]
  8. Berezikov Eugene, Guryev Victor, Plasterk Ronald H. A., Cuppen Edwin. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting. Genome Res. 2003 Dec 12;14(1):170–178. doi: 10.1101/gr.1642804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brook C. G., Mürset G., Zachmann M., Prader A. Growth in children with 45,XO Turner's syndrome. Arch Dis Child. 1974 Oct;49(10):789–795. doi: 10.1136/adc.49.10.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brudno Michael, Do Chuong B., Cooper Gregory M., Kim Michael F., Davydov Eugene, NISC Comparative Sequencing Program. Green Eric D., Sidow Arend, Batzoglou Serafim. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 2003 Mar 12;13(4):721–731. doi: 10.1101/gr.926603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carmichael C. M., McGue M. A cross-sectional examination of height, weight, and body mass index in adult twins. J Gerontol A Biol Sci Med Sci. 1995 Jul;50(4):B237–B244. doi: 10.1093/gerona/50a.4.b237. [DOI] [PubMed] [Google Scholar]
  12. Cavanaugh J., IBD International Genetics Consortium International collaboration provides convincing linkage replication in complex disease through analysis of a large pooled data set: Crohn disease and chromosome 16. Am J Hum Genet. 2001 Apr 12;68(5):1165–1171. doi: 10.1086/320119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cox N. J., Wapelhorst B., Morrison V. A., Johnson L., Pinchuk L., Spielman R. S., Todd J. A., Concannon P. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet. 2001 Aug 15;69(4):820–830. doi: 10.1086/323501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Daw E. W., Thompson E. A., Wijsman E. M. Bias in multipoint linkage analysis arising from map misspecification. Genet Epidemiol. 2000 Dec;19(4):366–380. doi: 10.1002/1098-2272(200012)19:4<366::AID-GEPI8>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  15. Deng Hong-Wen, Xu Fu-Hua, Liu Yao-Zhong, Shen Hui, Deng Hongyi, Huang Qing-Yang, Liu Yong-Jun, Conway Theresa, Li Jin-Long, Davies K. M. A whole-genome linkage scan suggests several genomic regions potentially containing QTLs underlying the variation of stature. Am J Med Genet. 2002 Nov 15;113(1):29–39. doi: 10.1002/ajmg.10742. [DOI] [PubMed] [Google Scholar]
  16. Griffith A. J., Sprunger L. K., Sirko-Osadsa D. A., Tiller G. E., Meisler M. H., Warman M. L. Marshall syndrome associated with a splicing defect at the COL11A1 locus. Am J Hum Genet. 1998 Apr;62(4):816–823. doi: 10.1086/301789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guerra R., Etzel C. J., Goldstein D. R., Sain S. R. Meta-analysis by combining p-values: simulated linkage studies. Genet Epidemiol. 1999;17 (Suppl 1):S605–S609. doi: 10.1002/gepi.1370170798. [DOI] [PubMed] [Google Scholar]
  18. Göring H. H., Terwilliger J. D. Linkage analysis in the presence of errors III: marker loci and their map as nuisance parameters. Am J Hum Genet. 2000 Mar 23;66(4):1298–1309. doi: 10.1086/302846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Halpern J., Whittemore A. S. Multipoint linkage analysis. A cautionary note. Hum Hered. 1999 Jul;49(4):194–196. doi: 10.1159/000022874. [DOI] [PubMed] [Google Scholar]
  20. Hiekkalinna Tero, Terwilliger Joseph D., Sammalisto Sampo, Peltonen Leena, Perola Markus. AUTOGSCAN: powerful tools for automated genome-wide linkage and linkage disequilibrium analysis. Twin Res Hum Genet. 2005 Feb;8(1):16–21. doi: 10.1375/1832427053435382. [DOI] [PubMed] [Google Scholar]
  21. Hirschhorn J. N., Lindgren C. M., Daly M. J., Kirby A., Schaffner S. F., Burtt N. P., Altshuler D., Parker A., Rioux J. D., Platko J. Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. Am J Hum Genet. 2001 Jun 15;69(1):106–116. doi: 10.1086/321287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kong Augustine, Gudbjartsson Daniel F., Sainz Jesus, Jonsdottir Gudrun M., Gudjonsson Sigurjon A., Richardsson Bjorgvin, Sigurdardottir Sigrun, Barnard John, Hallbeck Bjorn, Masson Gisli. A high-resolution recombination map of the human genome. Nat Genet. 2002 Jun 10;31(3):241–247. doi: 10.1038/ng917. [DOI] [PubMed] [Google Scholar]
  23. Lenhard Boris, Sandelin Albin, Mendoza Luis, Engström Pär, Jareborg Niclas, Wasserman Wyeth W. Identification of conserved regulatory elements by comparative genome analysis. J Biol. 2003 May 22;2(2):13–13. doi: 10.1186/1475-4924-2-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li Y., Lacerda D. A., Warman M. L., Beier D. R., Yoshioka H., Ninomiya Y., Oxford J. T., Morris N. P., Andrikopoulos K., Ramirez F. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell. 1995 Feb 10;80(3):423–430. doi: 10.1016/0092-8674(95)90492-1. [DOI] [PubMed] [Google Scholar]
  25. Lilja Heidi E., Soro Aino, Ylitalo Kati, Nuotio Ilpo, Viikari Jorma S. A., Salomaa Veikko, Vartiainen Erkki, Taskinen Marja-Riitta, Peltonen Leena, Pajukanta Päivi. A candidate gene study in low HDL-cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster. Atherosclerosis. 2002 Sep;164(1):103–111. doi: 10.1016/s0021-9150(02)00040-0. [DOI] [PubMed] [Google Scholar]
  26. Lindgren C. M., Mahtani M. M., Widén E., McCarthy M. I., Daly M. J., Kirby A., Reeve M. P., Kruglyak L., Parker A., Meyer J. Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study. Am J Hum Genet. 2002 Jan 9;70(2):509–516. doi: 10.1086/338629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Loots Gabriela G., Ovcharenko Ivan. rVISTA 2.0: evolutionary analysis of transcription factor binding sites. Nucleic Acids Res. 2004 Jul 1;32(WEB):W217–W221. doi: 10.1093/nar/gkh383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mahtani M. M., Widén E., Lehto M., Thomas J., McCarthy M., Brayer J., Bryant B., Chan G., Daly M., Forsblom C. Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nat Genet. 1996 Sep;14(1):90–94. doi: 10.1038/ng0996-90. [DOI] [PubMed] [Google Scholar]
  29. Matys V., Fricke E., Geffers R., Gössling E., Haubrock M., Hehl R., Hornischer K., Karas D., Kel A. E., Kel-Margoulis O. V. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003 Jan 1;31(1):374–378. doi: 10.1093/nar/gkg108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mukhopadhyay Nandita, Finegold David N., Larson Martin G., Cupples L. Adrienne, Myers Richard H., Weeks Daniel E. A genome-wide scan for loci affecting normal adult height in the Framingham Heart Study. Hum Hered. 2003;55(4):191–201. doi: 10.1159/000073203. [DOI] [PubMed] [Google Scholar]
  31. Nievergelt Caroline M., Smith Douglas W., Kohlenberg J. Bradley, Schork Nicholas J. Large-scale integration of human genetic and physical maps. Genome Res. 2004 May 12;14(6):1199–1205. doi: 10.1101/gr.1475304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Connell J. R., Weeks D. E. PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet. 1998 Jul;63(1):259–266. doi: 10.1086/301904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pajukanta P., Nuotio I., Terwilliger J. D., Porkka K. V., Ylitalo K., Pihlajamäki J., Suomalainen A. J., Syvänen A. C., Lehtimäki T., Viikari J. S. Linkage of familial combined hyperlipidaemia to chromosome 1q21-q23. Nat Genet. 1998 Apr;18(4):369–373. doi: 10.1038/ng0498-369. [DOI] [PubMed] [Google Scholar]
  34. Pajukanta P., Terwilliger J. D., Perola M., Hiekkalinna T., Nuotio I., Ellonen P., Parkkonen M., Hartiala J., Ylitalo K., Pihlajamäki J. Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am J Hum Genet. 1999 May;64(5):1453–1463. doi: 10.1086/302365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pajukanta Päivi, Allayee Hooman, Krass Kelly L., Kuraishy Ali, Soro Aino, Lilja Heidi E., Mar Rebecca, Taskinen Marja-Riitta, Nuotio Ilpo, Laakso Markku. Combined analysis of genome scans of dutch and finnish families reveals a susceptibility locus for high-density lipoprotein cholesterol on chromosome 16q. Am J Hum Genet. 2003 Mar 12;72(4):903–917. doi: 10.1086/374177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parker A., Meyer J., Lewitzky S., Rennich J. S., Chan G., Thomas J. D., Orho-Melander M., Lehtovirta M., Forsblom C., Hyrkkö A. A gene conferring susceptibility to type 2 diabetes in conjunction with obesity is located on chromosome 18p11. Diabetes. 2001 Mar;50(3):675–680. doi: 10.2337/diabetes.50.3.675. [DOI] [PubMed] [Google Scholar]
  37. Perola M., Ohman M., Hiekkalinna T., Leppävuori J., Pajukanta P., Wessman M., Koskenvuo M., Palotie A., Lange K., Kaprio J. Quantitative-trait-locus analysis of body-mass index and of stature, by combined analysis of genome scans of five Finnish study groups. Am J Hum Genet. 2001 Jun 15;69(1):117–123. doi: 10.1086/321286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  39. Roberts S. B., MacLean C. J., Neale M. C., Eaves L. J., Kendler K. S. Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet. 1999 Sep;65(3):876–884. doi: 10.1086/302528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sandelin Albin, Wasserman Wyeth W. Prediction of nuclear hormone receptor response elements. Mol Endocrinol. 2004 Nov 24;19(3):595–606. doi: 10.1210/me.2004-0101. [DOI] [PubMed] [Google Scholar]
  41. Sheffield V. C., Weber J. L., Buetow K. H., Murray J. C., Even D. A., Wiles K., Gastier J. M., Pulido J. C., Yandava C., Sunden S. L. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet. 1995 Oct;4(10):1837–1844. doi: 10.1093/hmg/4.10.1837. [DOI] [PubMed] [Google Scholar]
  42. Silventoinen K., Kaprio J., Lahelma E. Genetic and environmental contributions to the association between body height and educational attainment: a study of adult Finnish twins. Behav Genet. 2000 Nov;30(6):477–485. doi: 10.1023/a:1010202902159. [DOI] [PubMed] [Google Scholar]
  43. Silventoinen Karri, Kaprio Jaakko, Lahelma Eero, Viken Richard J., Rose Richard J. Assortative mating by body height and BMI: Finnish twins and their spouses. Am J Hum Biol. 2003 Sep-Oct;15(5):620–627. doi: 10.1002/ajhb.10183. [DOI] [PubMed] [Google Scholar]
  44. Silventoinen Karri, Sammalisto Sampo, Perola Markus, Boomsma Dorret I., Cornes Belinda K., Davis Chayna, Dunkel Leo, De Lange Marlies, Harris Jennifer R., Hjelmborg Jacob V. B. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 2003 Oct;6(5):399–408. doi: 10.1375/136905203770326402. [DOI] [PubMed] [Google Scholar]
  45. Soro Aino, Pajukanta Päivi, Lilja Heidi E., Ylitalo Kati, Hiekkalinna Tero, Perola Markus, Cantor Rita M., Viikari Jorma S. A., Taskinen Marja-Riitta, Peltonen Leena. Genome scans provide evidence for low-HDL-C loci on chromosomes 8q23, 16q24.1-24.2, and 20q13.11 in Finnish families. Am J Hum Genet. 2002 Mar 12;70(5):1333–1340. doi: 10.1086/339988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Spuhler J. N. Assortative mating with respect to physical characteristics. Soc Biol. 1982 Spring-Summer;29(1-2):53–66. [PubMed] [Google Scholar]
  47. Thompson D. B., Ossowski V., Janssen R. C., Knowler W. C., Bogardus C. Linkage between stature and a region on chromosome 20 and analysis of a candidate gene, bone morphogenetic protein 2. Am J Med Genet. 1995 Dec 4;59(4):495–500. doi: 10.1002/ajmg.1320590417. [DOI] [PubMed] [Google Scholar]
  48. Wicklund C. L., Pauli R. M., Johnston D., Hecht J. T. Natural history study of hereditary multiple exostoses. Am J Med Genet. 1995 Jan 2;55(1):43–46. doi: 10.1002/ajmg.1320550113. [DOI] [PubMed] [Google Scholar]
  49. Willemsen Gonneke, Boomsma Dorret I., Beem A. Leo, Vink Jacqueline M., Slagboom P. Eline, Posthuma Danielle. QTLs for height: results of a full genome scan in Dutch sibling pairs. Eur J Hum Genet. 2004 Oct;12(10):820–828. doi: 10.1038/sj.ejhg.5201229. [DOI] [PubMed] [Google Scholar]
  50. Wiltshire Steven, Frayling Timothy M., Hattersley Andrew T., Hitman Graham A., Walker Mark, Levy Jonathan C., O'Rahilly Stephen, Groves Christopher J., Menzel Stephan, Cardon Lon R. Evidence for linkage of stature to chromosome 3p26 in a large U.K. Family data set ascertained for type 2 diabetes. Am J Hum Genet. 2001 Dec 20;70(2):543–546. doi: 10.1086/338760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wu Xiaodong, Cooper Richard S., Boerwinkle Eric, Turner Stephen T., Hunt Steve, Myers Richard, Olshen Richard A., Curb David, Zhu Xiaofeng, Kan Donghui. Combined analysis of genomewide scans for adult height: results from the NHLBI Family Blood Pressure Program. Eur J Hum Genet. 2003 Mar;11(3):271–274. doi: 10.1038/sj.ejhg.5200952. [DOI] [PubMed] [Google Scholar]
  52. Wu Xiaodong, Cooper Richard S., Borecki Ingrid, Hanis Craig, Bray Molly, Lewis Cora E., Zhu Xiaofeng, Kan Donghui, Luke Amy, Curb David. A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am J Hum Genet. 2002 Mar 28;70(5):1247–1256. doi: 10.1086/340362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wuyts W., Van Hul W. Characterization and genomic localization of the mouse Extl2 gene. Cytogenet Cell Genet. 2000;89(3-4):185–188. doi: 10.1159/000015609. [DOI] [PubMed] [Google Scholar]
  54. Wuyts W., Van Hul W., Hendrickx J., Speleman F., Wauters J., De Boulle K., Van Roy N., Van Agtmael T., Bossuyt P., Willems P. J. Identification and characterization of a novel member of the EXT gene family, EXTL2. Eur J Hum Genet. 1997 Nov-Dec;5(6):382–389. [PubMed] [Google Scholar]
  55. Wuyts W., Van Hul W., Wauters J., Nemtsova M., Reyniers E., Van Hul E. V., De Boulle K., de Vries B. B., Hendrickx J., Herrygers I. Positional cloning of a gene involved in hereditary multiple exostoses. Hum Mol Genet. 1996 Oct;5(10):1547–1557. doi: 10.1093/hmg/5.10.1547. [DOI] [PubMed] [Google Scholar]
  56. Xu Jianfeng, Bleecker Eugene R., Jongepier Hajo, Howard Timothy D., Koppelman Gerard H., Postma Dirkje S., Meyers Deborah A. Major recessive gene(s) with considerable residual polygenic effect regulating adult height: confirmation of genomewide scan results for chromosomes 6, 9, and 12. Am J Hum Genet. 2002 Jul 15;71(3):646–650. doi: 10.1086/342216. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES